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Abstract

Memory-based key-value stores, such as Memcached and

Redis, are often used to speed up web applications. Specifi-

cally, they are used to cache the results of computations, such

as database queries and dynamically generated web pages,

so that a future request to the web application may not have

to repeat the same computation. Currently, when memory-

based key-value stores reach their capacity limits, they use

replacement policies, like LRU and random, that are oblivi-

ous to differences among the cached results in their recom-

putation costs. However, this paper shows that if the costs

of recomputing cached results vary significantly, as in the

RUBiS and TPC-W benchmarks, then a cost-aware replace-

ment policy will not only reduce the web application’s total

recomputation cost but also reduce its average response time.

To this end, this paper introduces GD-Wheel, which is an

amortized constant-time implementation of the GreedyDual

replacement algorithm that supports a limited range of costs.

In effect, GD-Wheel integrates recency of access and cost of

recomputation in an efficient manner. Moreover, this paper

describes an implementation of GD-Wheel in Memcached,

including the modifications to Memcached’s interface so that

web applications can include cost information with each

key-value pair, and a new cost-aware slab rebalancing policy

for Memcached’s slab-based memory allocator. An evalua-

tion of this implementation using the Yahoo! Cloud Serving

Benchmark shows that GD-Wheel, when compared to LRU,

reduces the total recomputation cost by as much as 90%.

Moreover, GD-Wheel reduces the web application’s average
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and 99th percentile latency to obtain the computed results by

as much as 56% and 85%, respectively.

1. Introduction

Low-latency access to large volumes of data has become

critical for many web services. Given the latency of perform-

ing database queries and dynamic web page renderings, it is

desirable to cache information in memory for faster reuse.

Memory-based key-value stores allow for combining the dis-

tributed memory of different machines into a single, large

pool. To support low-latency access to data, these memory-

based key-value stores are used to implement distributed

caches by many large-scale web applications. For instance,

Memcached [15] is used at Facebook, Twitter and Zynga;

and Redis [3] is used at GitHub, Flickr and Stack Overflow.

Memory-based key-value stores support two basic opera-

tions: GET for retrieving the value associated with the given

key in the store, and SET for inserting a new key-value pair

into the store. Since the underlying operations on current

key-value store data structures that are used to implement

GET and SET have constant time complexity, doing GET

or SET also takes constant time regardless of the number of

cached pairs. As a result, GET or SET have very low laten-

cies. However, memory-based key-value stores cannot pro-

cess an incoming SET request when the store is full unless a

replacement is made.

Because of their fast response and finite size, memory-

based key-value stores are usually used as database query

caches, web page caches, or in general caches for any kind

of computation results. By caching the results of computa-

tions in key-value stores, applications can avoid recomput-

ing the same results and thereby reduce their read access

latencies. Since these computations may have different pur-

poses and even come from different sources, the results of

computations cached in key-value stores may have differ-

ent computation costs. In other words, it may take different

amounts of time to recompute the different results cached

in key-value stores. In fact, studies of real-world key-value

store deployments [5, 24] and several representative web ap-

plication benchmarks [10] provide evidence that significant

cost variations do exist.
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Because of computation cost variations, it could be desir-

able to retain key-value pairs with higher rather than lower

recomputation costs. However, to take these costs into con-

sideration when replacing key-value pairs, there are two

problems that have to be addressed. The first is that key-

value stores don’t have the cost information available. They

don’t have the information available because this cost can

only be defined by clients and measured outside the cache.

Moreover, the current SET operation protocol does not pro-

vide an option for clients to include the cost information with

a key-value pair. Thus, we need to provide a protocol that al-

lows clients to include the cost information.

The second problem is that current replacement polices

used by key-value stores don’t take cost into consideration.

For example, Memcached uses separate Least Recently Used

(LRU) queues for objects of different sizes [1]. To increase

space efficiency and concurrency in Memcached, Fan et al.

have recently proposed a CLOCK-based approximation to

LRU [14]. In contrast, Redis provides options for using ei-

ther random or LRU-based replacement [2]. In summary, all

of these replacement policies take constant time for making

replacement decisions, but none of them take cost into con-

sideration.

Instead of these existing polices, we need a replacement

policy that takes cost into consideration and retains the key-

value pairs with higher rather than lower cost. As a possi-

ble solution, the GreedyDual algorithm generalizes the LRU

algorithm to address the weighted caching problem, which

is the problem of making replacement decisions for ob-

jects with non-uniform costs [31]. To solve this problem, the

GreedyDual algorithm integrates recency of access and cost

of cached objects when making replacement decisions. In a

nutshell, GreedyDual maintains a dynamic priority on each

cached object that reflects its cost and recency of access, and

replaces the object with the lowest priority. However, there

is still a problem with using the GreedyDual algorithm in

key-value stores. For either inserting or simply accessing an

object, the time complexity of the state-of-the-art implemen-

tation of GreedyDual is logarithmic in the number of ob-

jects [11]. As key-value stores otherwise use constant-time

algorithms to achieve fast GET and SET response times, a

logarithmic complexity replacement policy is undesirable. In

other words, we need a more efficient implementation of the

GreedyDual algorithm.

To start, this paper argues that it can be beneficial for key-

value stores to provide the option for clients to include cost

information with SET requests, and take such cost variations

into consideration when making replacement decisions. As

a demonstration, this paper presents a new cost-aware re-

placement policy, GD-Wheel, which is an efficient imple-

mentation of the GreedyDual algorithm. GD-Wheel uses a

data structure that we call Hierarchical Cost Wheels that

is inspired by Varghese and Lauck’s Hierarchical Timing

Wheels [30]. In essense, through the use of Hierarchical

Cost Wheels our GreedyDual implementation has time com-

plexity that is a function of the number of priorities rather

than cached objects. Moreover, when the number of prior-

ities are limited to a predefined range, GD-Wheel can be

shown to achieve amortized constant-time complexity per

insertion or access operation. And, in fact, while the com-

putation costs for key-value pairs in the TPC-W and RUBiS

workloads vary, the maximum difference is only about a fac-

tor of twenty. Consequently, the computation costs can be

effectively mapped onto a limited range of integers.

In addition, this paper describes a full implementation

of GD-Wheel in Memcached, including our changes to the

slab-based memory allocator and the SET request proto-

col. Under Memcached’s slab-based memory allocator, key-

value pairs of different sizes are stored in different slab

classes, and each of these classes performs LRU replace-

ment independently. Thus, we replaced each slab class’s im-

plementation of LRU replacement with GD-Wheel. To bal-

ance the memory allocated to different slab classes, Mem-

cached performs periodic rebalancing that moves slabs be-

tween classes based on differences in the eviction rates

among the slab classes. As an alternative to this policy, we

also implemented a new cost-aware rebalancing policy.

We evaluated the performance of Memcached with GD-

Wheel and the cost-aware rebalancing policy using the Ya-

hoo! Cloud Serving Benchmark (YCSB) [12]. This evalua-

tion consists of two parts. In the first part, we directly com-

pare GD-Wheel and LRU using workloads with different

cost distributions but key-value pairs that are of the same

size. Consequently, all of the key-value pairs belong to the

same slab class, so we avoid any side effects from the re-

balancing policy. In contrast, in the second part of the eval-

uation, we use workloads where key-value pairs of differ-

ent sizes have different costs, enabling us to compare Mem-

cached’s original rebalancing policy with our cost-aware

policy. Overall, the results show that our approach, when

compared to LRU and the original rebalancing policy, re-

duces the total recomputation cost by as much as 90%. In ad-

dition, our approach reduces the average and 99th percentile

application read access latency by as much as 56% and

85%, respectively. Finally, we show that, when compared

to the original GreedyDual implementation, GD-Wheel also

reduces latencies and CPU overhead in Memcached.

The rest of this paper is organized as follows. Section 2

provides deeper motivation for our work. Section 3 presents

the GD-Wheel replacement policy. Section 4 describes the

implementation of GD-Wheel in the Memcached key-value

store. Section 5 describes the original rebalancing policy in

Memcached and presents our alternative cost-aware rebal-

ancing policy. Section 6 describes our experimental method-

ology and presents our results. Finally, Section 7 discusses

related work, and Section 8 summarizes our conclusions.

2



3) Get(key=query)

4) Lookup & Return value/nil

5) Query

9) Set(key,value=query result)

Key-Value

Database

Store

Web

Application

6) Execution &

Return Result

1) HTTP
Request

8) HTTP
Response

Database1 2 3
Get Hit

Get Miss

7

5 6 8( 9)

2) Generate

Query

7) Generate

HTTP Page

4 8

7

Figure 1: Using a Key-Value Store as a Database Query Cache.

2. Motivation

This section first explains how memory-based key-value

stores are used by web applications. Then, it discusses the

different sources of cost variation in the recomputation of

key-value pairs.

2.1 How Key-Value Stores are Used

A web application, such as an online bookstore, may receive

HTTP requests asking for book details, new books, best

sellers, etc. The application then generates the necessary

database queries to satisfy these requests and issues these

queries to the database. After receiving the query results,

the application generates the web page and sends the HTTP

response. As described previously, there is a spectrum of

what could be cached in a key-value store: it could be as

low level as database query results; it could be as high

level as web pages; or it could be both low and high level

computations cached in the same store.

Figure 1 illustrates how a key-value store is used as a

database query cache. After receiving a HTTP request (Step

1), the application generates the necessary database query

(Step 2) and asks the key-value store for the query result

by sending a GET request with the query as the key (Step

3). After receiving the GET request, the key-value store

performs a lookup for the requested key and returns either

the cached query result or a not found error (Step 4). If

the query result is returned, the application skips to step 7

wherein it generates the web page. Finally, the application

sends the HTTP response (Step 8). We refer to this case as

a GET hit. If, however, a not found error is returned, then

the application needs to request the database to execute the

query (Steps 5&6). We refer to this case as a GET miss. After

the execution in the database, the application usually sends a

SET request to retain the query result for later use (Step 9).

As another use case, a key-value store could be used as a

cache for dynamically generated web pages. After receiving

a HTTP request, the application first asks the key-value store

for the web page. On a GET hit, the application simply

returns the cached web page. However, on a GET miss,

the application needs to generate the web page, which may

involve extensive computation, including database queries.

Due to the limited capacity of the key-value store, key-

value pairs may be evicted from the store. This results in

GET misses and recomputation of previously cached val-

ues. For database query results, the recomputation cost is the

sum of steps 5 and 6 in Figure 1. For web pages, the recom-

putation cost is the sum of step 2 and steps 5 through 7 in

Figure 1. Current key-value stores don’t provide the option

for clients to include such recomputation cost information in

SET requests.

2.2 Cost Variations in Recomputations

There exist two common sources of variation in the compu-

tation costs of key-value pairs. The first source is simultane-

ously caching different types of objects from different lev-

els in the application stack. As described above, a key-value

store could cache both low level query results and high level

web pages. These different types of objects will likely have

different recomputation times, and thus different costs.

As a real-world example, Twemcache, a version of Mem-

cached deployed by Twitter, has two use cases: First, Twem-

cache stores recently and frequently accessed Tweets to re-

duce the frequency of database accesses. Second, Twem-

cache also stores recently rendered Tweets, which includes

computed metadata, such as the number of retweets and fa-

vorites [5].

Similarly, Facebook uses Memcached for multiple pur-

poses [24]. For example, Facebook uses Memcached as a

query cache to lighten the read load on databases. More gen-

erally, Facebook leverages Memcached for caching various

computation results, such as the results of sophisticated ma-

chine learning algorithms that are used by a variety of ap-

plications. To accommodate the cache miss cost variations,

Facebook partitions a cluster’s Memcached servers into sep-

arate pools. There is a default general pool and some smaller

pools for key-value pairs that are accessed frequently but

have an inexpensive cache miss cost. Although this approach

of separating key-value pairs with different costs doesn’t re-

quire any changes to Memcached, it does require prior or

dynamic usage analysis to determine the exact size of each

pool. If the workload characteristics change over time, such

partitioning may result in inefficient usage of memory. It

could be more efficient to maintain a single pool and make

replacement decisions based on the recomputation cost vari-

ations.

The second source of cost variations comes from objects

of the same type or at the same level in the application stack.

Previous work on some web application benchmarks has

shown that even objects at the same level can have widely

varying costs. Bouchenak et al. implemented a web page

cache above two web application benchmarks: RUBiS and

TPC-W [10].

RUBiS implements the core functionality of an auction

site modelled after eBay [6]. It defines various interac-
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RUBiS TPC-W

Low Cost (Proportion) 10 ms (17%) 10 - 25 ms (48%)

Mid Cost (Proportion) 60 - 95 ms (79%) 45 - 150 ms (25%)

High Cost (Proportion) 240 ms (4%) 210 - 300 ms (27%)

Table 1: Extra Response Times on Cache Misses.

tions, including browsing, bidding, buying or selling items.

Bouchenak et al. measured the extra response time on cache

misses for different interactions. For simple interactions,

such as browsing items, the extra response time is as low as

10ms. On the other hand, the cache miss cost is as high as

240ms for complicated interactions, such as showing user

information, which includes buying and selling history.

TPC-W is a web server and database performance bench-

mark that simulates an online bookstore [4]. It defines in-

teractions including listing new products and best sellers,

updating the shopping cart, ordering, etc. Bouchenak et al.

measured the extra response time on cache misses. For some

simple interactions, such as displaying orders and showing

product detail, the extra response time is as low as 10ms to

25ms. On the other hand, the cache miss cost is as high as

210ms to 300ms for complicated interactions such as show-

ing best sellers and executing searches.

To summarize, Table 1 categorizes the cache misses in

RUBiS and TPC-W based upon the extra time they took to

respond. Specifically, we categorize the cache misses into

three groups, where the ratio of response times between the

groups is roughly 1:7.5:20. On one hand, this analysis shows

that there do exist substantial variations in the execution

times for different interactions. On the other hand, the vari-

ations aren’t so large that they couldn’t be mapped onto a

limited range of cost values.

More generally, the following intuitive argument can be

made for the sufficiency of a limited range of cost values for

web applications. At the low end, as the computation cost

shrinks, it’s no longer worth caching the value; recomputing

it is cheaper than requesting it from the key-value store. At

the high end, there are limits to how long web application

developers will want to make users wait, even in the worst

case. So, arbitrarily long computations will not be performed

in the course of an interaction.

3. GD-Wheel Replacement Policy

Based on the observed cost variations in key-value store

workloads, this paper proposes the GD-Wheel replacement

policy, which is an efficient implementation of the Greedy-

Dual algorithm. This section first introduces the Greedy-

Dual algorithm. Then, it describes the implementation of

the GD-Wheel replacement policy using the Hierarchical

Cost Wheels structure. Finally, it discusses GD-Wheel’s

time complexity.

Algorithm 1 The GreedyDual Algorithm under Cao et al.’s

implementation

Initialize M←∅ and L← 0

For each requested object p

if p is already in memory

H(p)← L+ c(p)
Update the position of p in priority queue

if p is not in memory

while there is not enough room in memory for p

M←{a | a ∈ memory and H(a) = min{H(b) | b ∈ memory}}
Evict the least recently used object q in M

Let L← H(q)
H(p)← L+ c(p)
Insert p into priority queue

end

3.1 GreedyDual Algorithm

Young et al. introduced the GreedyDual algorithm as a

primal-dual strategy for solving the weighted caching prob-

lem, which is the problem of making replacement decisions

for items with non-uniform costs [31]. This algorithm is of

practical interest because it generalizes the LRU algorithm,

integrating recency of access with the cost of cached objects

when making replacement decisions.

The original implementation of the GreedyDual algo-

rithm associates a value, H, with each cached object. On

insertion or reuse of an object p, H(p) is set to be the cost

of bringing the object into the cache c(p). On eviction, the

object q with the lowest H value H(q) is evicted. Then all

cached objects reduce their H values by H(q). Since objects

with higher cost as well as recently inserted or reused ob-

jects have higher H values, the GreedyDual algorithm seam-

lessly integrates recency of access and cost of cached ob-

jects in making replacement decisions. Since, as described,

an eviction requires a subtraction on every cached object,

this implementation requires O(n) time complexity for each

eviction, where n is the total number of cached objects.

A few years later, Cao et al. introduced a new implemen-

tation with reduced time complexity [11]. Described in Al-

gorithm 1, their implementation uses a single priority queue

to store the priority of each cached object. As before, each

cached object has an associated priority value H. However,

instead of doing subtractions on all cached objects on evic-

tions, the priority queue uses a global inflation value L. On

insertion or reuse of an object p, H(p) is set to L + c(p)
where L is the current inflation value and c(p) is the cost of

p. On eviction, the object with the lowest H in the queue is

evicted. If multiple objects have the lowest H value, the least

recently used one will be evicted. Then the global inflation

value L is updated to the H value of the evicted object.

By introducing the global inflation value, Cao et al.’s im-

plementation of the algorithm takes only O(logn) time for

handling an insertion, a reuse, or an eviction. However, when

the global inflation value is about to overflow, a scan of

the priority queue that takes O(n) time is required to re-

duce the inflation value. Although Cao et al.’s implemen-
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Figure 2: A Two-Level Hierarchical Cost Wheels. CH = Clock

Hand.

tation reduces the complexity to O(logn) time per operation,

this is still more costly than the constant-time policies cur-

rently used by key-value stores. Thus, if we are to maintain

the constant-time operation that key-value stores currently

achieve for GET and SET requests, then we need a more

efficient implementation of the GreedyDual algorithm with

constant time complexity per operation.

3.2 GD-Wheel Replacement Policy

3.2.1 Hierarchical Cost Wheels

Since the GreedyDual algorithm requires a priority for each

object, it seems impossible to build an implementation with

constant complexity. However, if we can restrict the priority

range, constant time complexity is achievable.

To reduce the time complexity, GD-Wheel uses a data

structure that we call Hierarchical Cost Wheels that are

inspired by Varghese and Lauck’s Hierarchical Timing

Wheels [30]. As shown in Figure 2, this structure is made

up of a series of Cost Wheels. Each Cost Wheel is basically

an array of queues with a clock hand pointing to one of its

queues. By using separate queues for objects with different

priorities, this structure changes the time complexity from

being a function of the number of objects to being a function

of the number of priorities. The time complexity would be

logarithmic if not for the fact that we limit the range of pri-

orities supported by the Hierarchical Cost Wheels. By using

a fixed number of Cost Wheels in a hierarchy and a fixed

number of queues in each Cost Wheel, the Hierarchical Cost

Wheels structure can support a limited yet sufficient priority

range to express the cost variations found in key-value store

workloads.

A Single Cost Wheel A single Cost Wheel (Level 1 Cost

Wheel in Figure 2) has the same functionality as a priority

queue. The only difference is that a Cost Wheel only sup-

ports k different priorities, where k is the number of queues

in each Cost Wheel configured at initialization. Acting like

the global inflation value in Cao et al.’s implementation, the

clock hand advances when searching for eviction candidates.

Instead of storing all objects in a single priority queue, ob-

jects are stored in different queues. The queue is selected for

each inserted object by adding the object’s cost to the cur-

rent position of the clock hand. For an object with cost c and

the clock hand pointing to the xth queue, the object will be

① q…...a b c ②

p

③

(Cost=2)

(Cost=1)

④

CH

…...

Level 1 Cost Wheel, size = k

Figure 3: Handling an Eviction(object q), an Insertion(object p),

and a Reuse(object c) in a Single Cost Wheel.

inserted into the ((c+x) mod k)th queue. As a result, objects

with different priorities are stored in different queues.

Figure 3 illustrates how evictions, insertions, and reuse

are handled in a single Cost Wheel. Suppose object p is

being inserted. If there is not enough free memory to hold

p, then one or more objects must be evicted. To select these

objects, the clock hand advances until a non-empty queue is

found (Step 1). Then the object q at the tail of that queue is

evicted (Step 2). Once enough objects have been evicted to

allow p to be instantiated, p will be inserted at the head of

the queue selected by adding p’s cost to the current position

of the clock hand. As shown in Figure 3, because the clock

hand is currently pointing to the 2nd queue, the object p

with cost 2 will be inserted in the 4th queue (Step 3). When

an object is reused, the position of the object is updated

based on the current position of the clock hand. As shown in

Figure 3, the object c with cost 1 is reused. Then the object

c is removed from the 2nd queue and inserted at the head of

the 3rd queue, since the clock hand is currently pointing to

the 2nd queue (Step 4). In the case when the clock hand’s

position is unchanged, the reused object will be removed

from the queue and inserted at the head of the same queue.

Hierarchical Cost Wheels Since a single Cost Wheel’s

size k is fixed at run-time, a single Cost Wheel can only

support up to k costs. To extend the range of costs in an

efficient manner, we use a fixed but configurable number

of Cost Wheels in a hierarchy such that each higher level

Cost Wheel supports a larger range of costs. As shown in

Figure 2, each queue in the level 1 Cost Wheel only supports

a single cost, while each queue in the level 2 Cost Wheel

supports k different costs. In general, each queue in a level x

Cost Wheel will support kx−1 different costs, where k is the

number of queues in the Cost Wheel. Thus, a key-value store

using GD-Wheel will be configured at initialization time to

utilize a sufficient number of Cost Wheels to support the

desired cost range.

Hierarchical Cost Wheels act the same as a single Cost

Wheel on insertions and reuse. Objects are inserted or moved

to the appropriate queue by adding the object’s cost to the

current position of the clock hands. Objects will be evicted

from the lowest level Cost Wheel, not from the higher level
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Figure 4: A Migration in the Higher Level Cost Wheel.

Cost Wheels, because by definition objects stored in the

higher level Cost Wheels have higher priorities. The clock

hand in the lowest level Cost Wheel keeps advancing until

a non-empty queue is found. On the other hand, the clock

hands in the higher level Cost Wheels advance to the next

queue when the next lower level Cost Wheel’s clock hand

has completed a whole round. This is similar to the relation-

ship between second, minute, and hour hands of an analog

clock.

After a clock hand in a higher level Cost Wheel advances,

a migration is performed between that Cost Wheel and the

next lower level Cost Wheel. During this migration, objects

stored in the queue pointed to by the higher level clock

hand will be migrated to the corresponding queues in the

next lower level Cost Wheel. In effect, a migration realizes

the reduction of priorities for these objects. An object with

H = a + bk (0 < a,b < k, where k = number of queues

in each Cost Wheel) will be migrated to the level 1 Cost

Wheel’s (a+ 1)th queue when the clock hand in the level 1

Cost Wheel has completed b rounds. The object is migrated

to the (a+ 1)th queue because the clock hand in the lower

level Cost Wheel will always point to the 1st queue when

migration happens.

Figure 4 illustrates how migration is performed. After the

clock hand in the level 1 Cost Wheel has completed a whole

round (Step 1), the clock hand in the level 2 Cost Wheel

advances to the next queue (Step 2). Then the objects pointed

to by the level 2 Cost Wheel’s clock hand will be migrated to

the corresponding queues in the level 1 Cost Wheel (Step 3):

object a with cost k+ 2 is moved to the 3rd queue; object b

with cost k+1 is moved to the 2nd queue; and object q with

cost k is moved to the 1st queue in the level 1 Cost Wheel. If

the migrated object is reused, it will ”jump” back to a higher

level Cost Wheel since it has higher priority again.

3.2.2 GD-Wheel Time Complexity Analysis

Algorithm 2 summarizes GD-Wheel’s approach to the im-

plementation of the GreedyDual algorithm. It’s different

from the original algorithm because of the Hierarchical Cost

Wheels data structure. In this section, we will argue that this

implementation achieves amortized constant-time complex-

ity per operation if the priority range is limited.

Algorithm 2 The GreedyDual Algorithm under GD-

Wheel’s implementation

Let NW ← number of Cost Wheels

Let NQ← number of queues in each Cost Wheel

Let C[NW]← array of ones //Clock hands start from the 1st queues

For each requested object p

if p is already in memory

Remove p

W← max{i | 0 < i≤ NW and round(c(p)/NQ(i-1))> 0}
Q← (round(c(p)/NQ(W-1))+C[W]) mod NQ

Insert p to the head of Qth queue in the level W Cost Wheel

if p is not memory

while there is not enough room in memory for p

C[1]← index of next non-empty queue in level 1 Cost Wheel

Evict q at the tail of the C[1]th queue in level 1 Cost Wheel

if C[1] has advanced a whole round back to 1, call migration(2)

W← max{i | 0 < i≤ NW and round(c(p)/NQ(i-1))> 0}
Q← (round(c(p)/NQ(W-1))+C[W]) mod NQ

Insert p to the head of Qth queue in the level W Cost Wheel

end

Function migration(idx)

C[idx]← (C[idx] + 1) mod NQ

if C[idx] has advanced a whole round back to 1, call migration(idx+1)

For each object p in the C[idx]th queue in the level idx Cost Wheel

Remove p

Cost Remainder← c(p) mod NQ(idx-1)

Q← (round(Cost Remainder/NQ(idx-2))+C[idx-1]) mod NQ

Insert p to the head of Qth queue in the level (idx−1) Cost Wheel

end

In general, an object is first inserted into the cache, then

reused zero or more times, and finally evicted. Since each

queue is implemented by a doubly linked list, removing

or inserting a given node requires only constant time. An

insertion of a given object requires one list insertion. A

reuse of a given object requires one list removal and one list

insertion. Thus handling either an insertion or a reuse of an

object takes only O(1) time in the worst case.

After initialization, the number of Cost Wheels NW and

the size of each Cost Wheel NQ are fixed. An eviction of an

object from the lowest level Cost Wheel requires advancing

the clock hand to the next non-empty queue and removing

the object at the tail of the queue. Advancing the clock

hand takes constant time since we have a fixed number of

queues in a Cost Wheel. Thus an eviction takes constant

time for objects in the lowest level Cost Wheel. However, a

migration from the next level Cost Wheel will be performed

if the clock hand has completed a whole round. It’s true that

migrating the objects in a queue would take O(n) time in the

worst case if all the cached objects are stored in that queue.

However, we show that if each migrated object is charged

for the cost of its migrations, the overall algorithm achieves

an amortized constant-time complexity over a sequence of

operations.

A migration of an object requires its removal from the

queue in the higher level Cost Wheel and an insertion to the

queue in the lower level Cost Wheel. Thus one migration of

one object takes constant time. Considering a sequence of
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Figure 5: Basic Components of Memory-Based Key-Value Stores.

HV = Hash Value.

operations for an arbitrary object, the cost per operation, in-

cluding the cost of migrations between operations, is amor-

tized constant time. Because a sequence of operations on

an object always starts from an insertion and ends with an

eviction, there are two cases where migrations could hap-

pen: between an insertion/reuse and a reuse; or between an

insertion/reuse and an eviction.

After an insertion or a reuse of an object with high cost,

the object will be inserted into the higher level Cost Wheel.

A migration can only move objects in one direction, from

the higher level Cost Wheels to the lower level Cost Wheels.

Since there are a fixed number of Cost Wheels at run-time,

there will be a constant number of migrations of an ob-

ject until an operation removes the object from the lower

level Cost Wheel. Until the next reuse or the eviction of

the object, there could only be a constant number of migra-

tions. Thus the migrations between an insertion/reuse and a

reuse/eviction have constant cost. Any further migrations af-

ter the second reuse will be charged to that reuse operation.

4. Implementation

This section first introduces the relevant components of

memory-based key-value stores. Then it provides a more

detailed introduction to the Memcached key-value store. Fi-

nally it describes the implementation of GD-Wheel in Mem-

cached.

4.1 Relevant Components of Memory-Based

Key-Value Stores

Figure 5 illustrates the relevant components of memory-

based key-value stores: an index of the key-value pairs and

the replacement data structure. The index consists of a hash

table which maps the hash value of a requested key to the

location where the key-value pair is stored in memory. The

replacement data structure is used to make eviction decisions

when there is not enough room for the new key-value pair

being inserted.

Each cached key-value pair has metadata which includes

the key/value size, expiration time, and linked list pointers

which point to the previous and next key-value pair’s meta-

data in the hash table and the replacement data structure.
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Figure 6: Memcached’s Memory Allocation and Replacement

Thus the actual memory allocated for each key-value pair

is based on the total size of the key, value, and metadata.

The hash table maps each hash value to a chain of key-value

pairs’ metadata. The replacement data structure uses a linked

list to link all key-value pairs and to determine the eviction

priority for each key-value pair.

When a GET request is sent to the key-value store, a hash

value is computed based on the requested key. Then the hash

table is used to map this hash value to a chain of key-value

pairs that might hold the requested key. After locating the

requested key-value pair in that chain, the key-value store

will first return the value and later update the position of the

key-value pair inside the replacement data structure.

When a SET request is sent to the key-value store, the

memory allocator first checks if there is enough memory to

store the key-value pair. If not, the replacement data structure

will be used to decide which key-value pair to evict. After

the memory used by that key-value pair is freed, the new

key-value pair is allocated and inserted into the hash table

and the replacement data structure.

4.2 Memcached Key-Value Store

Memcached is a high-performance distributed-memory ob-

ject caching system. Its simple design promotes quick

and easy deployment. In addition to the basic operations

GET and SET, Memcached also supports operations like

DELETE and REPLACE.

Figure 6 illustrates Memcached’s memory allocation

and replacement designs. Memcached uses a slab allocator

for memory allocation. This allocator divides the available

memory into 1 MB slabs and uses different slab classes to

store key-value pairs belonging to different size ranges. 1

MB slabs are distributed to different slab classes based on

the number of key-value pairs stored in each class. Each slab

class has an unique chunk size. If a slab class stores objects

of sizes from x to y (x ≤ y), the slabs belonging to the class

are divided into chunks of size y. The chunk sizes differ by

a growth factor, which is by default 1.25.

Each slab class has its own LRU queue for replacement.

In other words, only the objects stored in the same slab class

as the object being inserted will be considered for replace-

ment. If there are no free chunks, and no free slabs for that

slab class, Memcached will look at the tail of the slab class’s

LRU queue for an object to reclaim. In Memcached, objects

can have an expiration time. Before evicting an unexpired
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object from the tail of the LRU queue, Memcached will first

look at a fixed number of objects near the tail of the LRU

queue to see if an expired object can be reclaimed instead.

4.3 Implementation in Memcached

Our implementation replaces each slab class’s LRU mecha-

nism with GD-Wheel. By default, it uses two level of Hierar-

chical Cost Wheels, where each Cost Wheel has 256 queues.

Thus our GD-Wheel implementation supports 2562+256 =

65792 different costs by default, which is more than enough

to support the cost variations found in RUBiS and TPC-W.

To the metadata of each key-value pair, we add an additional

field for the cost information. This additional field increases

the metadata size by 2 bytes for each stored key-value pair.

However, since the allocated metadata size is rounded up to

an 8-byte boundary to avoid fragmentation, this additional

field doesn’t increase the allocated size of each metadata.

The SET request protocol is modified so that clients are able

to optionally send cost information with each key-value pair

to the Memcached server.

5. Rebalancing Policy in Memcached

This section first describes how the original rebalancing pol-

icy in Memcached works and discusses its deficiencies. Then

we present our alternative cost-aware rebalancing policy.

5.1 The Original Rebalancing Policy in Memcached

Since memory is distributed to different slab classes and

each slab class has its own replacement structure, the evic-

tion rates between different slab classes can vary signif-

icantly. To balance the memory allocated to each slab

class, Memcached has a rebalancing policy that periodically

moves slabs between slab classes based on the eviction rates

for the different slab classes. This policy checks the eviction

rate of each slab class 3 times per 30 seconds. If a slab class

has the highest eviction rate when all 3 checks were per-

formed, it will take the least recently used slab from a slab

class which had zero evictions in the last 30 seconds.

The original rebalancing policy in Memcached aims to

balance the memory allocated to each slab class based on

the eviction rates between slab classes. However, this policy

is very conservative and in many cases ineffective. First, the

policy only takes a slab from a slab class which has had

zero evictions in the last 30 seconds. Suppose there is a slab

class with more chunks and a lower eviction rate, and a slab

class with fewer chunks and a higher eviction rate. It might

be beneficial to move slabs from the class with the lower

eviction rate to the class with more evictions. Second, this

policy only moves at most one slab per 30 seconds. If the

chunk size is large, moving a single slab is far less than

needed. In addition, making periodic decisions might be too

”lazy” considering the fast response times of GET and SET.

Given recomputation cost variations, we argue that a re-

balancing policy should also take cost information into con-

sideration. Different slab classes may store key-value pairs

with much different recomputation costs. If a slab class

stores key-value pairs with higher average cost than any

other slab classes, it could be preferable to avoid evictions

from this slab class first.

5.2 The Cost-Aware Rebalancing Policy

As an alternative solution, we implemented a new cost-

aware rebalancing policy in Memcached. Each slab class

maintains an average cost per byte. Our rebalancing policy

moves slabs from the class with the lowest average cost to

the classes with higher average costs. We kept a field in

Memcached which remembers the slab class id that has the

lowest average cost. This field is updated when the average

cost information is changed in any slab class. This update

takes constant time since there are fixed number of slab

classes in Memcached.

Instead of making periodic decisions, our rebalancing

policy reacts immediately on evictions. When an eviction

occurs in a slab class with higher average cost, our rebalanc-

ing policy will move a certain number of least recently used

slabs from the class with lowest cost to the slab class suffer-

ing the eviction. The number of slabs moved is determined

by the size of the evicted key-value pair. More slabs will be

moved if the evicted key-value pair is large and vice versa.

By possibly preventing further evictions in slab classes with

higher average cost, our rebalancing policy complements the

cost-awareness inside each slab class.

In addition to the implementation of the GD-Wheel re-

placement policy in Memcached, we replaced the original

rebalancing policy with our cost-aware rebalancing policy.

Since the cost-aware rebalancing policy requires the cost

information for each key-value pair, it cannot collaborate

with LRU. In the following evaluation, we will compare

GD-Wheel combined with the cost-aware rebalancing policy

with LRU combined with the original rebalancing policy.

6. Evaluation

This section first discusses the real-world key-value store

workload characteristics on which our experimental work-

loads are based. Then we describe the evaluation environ-

ment and the YCSB Benchmark. This is followed by a de-

scription of our workloads and our experimental results.

Our evaluation has two primary goals. First, we want

to directly compare GD-Wheel with the LRU replacement

policy. We fulfill this goal with our study using single-size

workloads, i.e., workloads that use a single size for all key-

value pairs. Since only a single size is used, all key-value

pairs are stored in one slab class. This avoids side effects

from the rebalancing policy. Our second goal is to evaluate

our cost-aware rebalancing policy in Memcached. We fulfill

this goal with our study using multiple-size workloads, i.e.,

workloads that use different sizes and therefore different slab

classes for key-value pairs with different costs. We show that
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GD-Wheel together with cost-aware rebalancing can greatly

improve the performance of the application.

To show that logarithmic time complexity in the replace-

ment data structure would, in fact, affect GET/SET request

latencies, we also reproduced Cao et al.’s implementation of

the GreedyDual algorithm. We call this implementation GD-

PQ. It maintains all key-value pairs for a slab class in a sin-

gle priority queue. We will compare GD-PQ with GD-Wheel

and LRU in terms of GET/SET latencies in Memcached.

6.1 Real-World Workloads of Key-Value Stores

Recently, Atikoglu et al. [8] and Nishtala et al. [24] have

provided a detailed picture of how Facebook uses Mem-

cached. Atikoglu et al. reported the characteristics of five

Memcached pools sampled at Facebook. Nishtala et al.

recorded all Memcached operations for a small percentage

of user requests at Facebook. We based the workloads used

in the latter part of our evaluation on these characteristics.

Key/Value Sizes Small keys and values dominate in all

workloads. However, there exist large size variations among

cached items. Atikoglu et al. reported that most keys are

smaller than 32 bytes and most values are no more than a few

hundred bytes. Nonetheless, there are a few very large values

(around 1 MB). Nishtala et al. reported that the returned

values from Memcached GET requests have a median size

of 135 bytes and a mean size of 954 bytes.

GET-to-SET Ratio All workloads are GET intensive.

Atikoglu et al. reported that most of the Memcached pools

at Facebook are GET-dominated and the GET-to-SET ratio

was 30:1 for the pool most representative of general cache

usage. Since each GET miss is usually followed by a SET

to update the cache, the GET-to-SET ratio is affected by the

GET miss rate.

Miss Rate There are two kinds of GET misses in key-value

stores: cold misses and capacity misses. Cold misses are in-

evitable at warmup. On the other hand, GD-Wheel helps to

avoid the capacity misses with higher recomputation costs.

Atikoglu et al. reported that the mean GET hit rate over

the entire trace ranged from 81.4% to 98.7% across differ-

ent Memcached pools. For the pool most representative of

general cache usage, the hit rate was only 81.4%. Among

those misses, 22% were capacity misses. This means that

4.1% of GET requests resulted in capacity misses. Consid-

ering the approximately 55,000 request/sec rate of accesses

to that pool, the costs of these capacity misses greatly affect

the read access latencies.

Requests Distribution The requested keys on GET re-

quests follow a Zipf distribution. Atikoglu et al. reported

that most properties of the user requests can be modeled us-

ing power-law distributions (Zipf’s law) for the Memcached

pool most representative of general cache usage. About 50%

of key-value pairs were accessed in only 1% of requests.

6.2 Methodology

All experiments were run on two machines connected to

the same 1 Gbps network switch. Each machine had two

Quad-Core AMD Opteron 2393 SE processors and 32 GB

of DRAM. One machine acts as the Memcached server and

the other acts as its client. We configured Memcached with

different cache sizes ranging from 10 GB to 25 GB, and we

used the 25 GB cache size for most of the experiments. We

also configured Memcached with 8 threads, and one of the

LRU, GD-Wheel, and GD-PQ replacement policies. On the

client machine, we use the YCSB Benchmark to generate

GET and SET requests [12]. When the GD-Wheel or GD-

PQ replacement policy is used, the client includes the cost

of the key-value pair in the SET requests to Memcached.

The YCSB Benchmark is a load-generating tool that gen-

erates GET and SET requests based on a specified workload

configuration. We divide each experiment into two phases:

the first, the warmup phase, loads the key-value store by

sending SET requests for a certain number of different key-

value pairs; and the second, the measurement phase, exe-

cutes the desired workload. Since the pool of key-value pairs

is shared by the two phases, the number of SET requests in

the warmup phase will directly affect the hit rate in the mea-

surement phase. Thus, we controlled the number of SET re-

quests in the warmup phase to keep the hit rate during the

measurement phase at about 95% for LRU. Then we use the

same number of SET requests in the warmup phase for GD-

Wheel for a fair comparison. Since the cold misses in the

warmup phase are not included in the measurements, our

evaluation focuses on the benefits of GD-Wheel on capac-

ity misses. We aimed for 5% capacity misses, which is com-

parable to the rate of capacity misses in Facebook’s Mem-

cached servers.

During the measurement phase, each workload generates

100 million GET requests following a Zipf distribution on

the requested keys. During this phase, when a GET request

fails, or misses, a subsequent SET request will be sent for

the same key. As a result, each LRU workload’s measure-

ment phase will send 100 million GET requests and about 5

million SET requests, for a GET-to-SET ratio of about 20:1.

6.3 Workloads

Table 2 shows our single-size workloads. All workloads use

16-byte keys. Workload 1 is our baseline with 256-byte

values, three groups of costs based on the cost variations

in RUBiS and TPC-W, and an exponential distribution for

the proportion of each cost group. Workloads 2 and 3 use

both the cost groups and the cost proportions from RUBiS

and TPC-W, respectively. Workload 4 uses the same cost

for all objects. Workload 5 adopts a totally random cost

distribution. Workloads 6 to 9 are derived from the baseline

but use different value sizes. Workload 10 deviates from the

baseline by using a coarser cost distribution where all costs
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Workload
Key/Value

Cost Distribution
Size (bytes)

1. Baseline 16 / 256 10-30(80%);120-180(15%);350-450(5%)

2. RUBiS 16 / 256 10-30(20%);120-180(75%);350-450(5%)

3. TPC-W 16 / 256 10-30(50%);120-180(25%);350-450(25%)

4. Same 16 / 256 10(100%)

5. Random 16 / 256 20-400(100%)

6. Small 1 16 / 64 10-30(80%);120-180(15%);350-450(5%)

7. Small 2 16 / 128 10-30(80%);120-180(15%);350-450(5%)

8. Big 1 16 / 2048 10-30(80%);120-180(15%);350-450(5%)

9. Big 2 16 / 4096 10-30(80%);120-180(15%);350-450(5%)

10. Coarse 16 / 256 (1-3)*10(80%);(12-18)*10(15%);(35-45)*10(5%)

Table 2: Single Size Workload Configurations.

Workload
Key/Value

Cost Distribution
Size (bytes)

1. Baseline 16 / (192/256/320) 10-30(80%);120-180(15%);350-450(5%)

2. RUBiS 16 / (192/256/320) 10-30(20%);120-180(75%);350-450(5%)

3. TPC-W 16 / (192/256/320) 10-30(50%);120-180(25%);350-450(25%)

Table 3: Multiple Size Workload Configurations.
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Figure 7: Average GET/SET Request Latencies (µs) for the Base-

line Single Size Workload.

are multiples of 10. This workload evaluates the sensitivity

of GD-Wheel’s results to the precision of cost distribution.

Table 3 shows our multiple-size workloads. As summa-

rized in the table, we use the same cost variations as the

first three single-size workloads. The difference is that now

we are using different value sizes for the three cost groups.

The higher the cost, the larger the value size. We select these

three value sizes so that the key-value pairs in different cost

groups will fall into different slab classes.

6.4 Results

6.4.1 Single Size Workload Results

Average GET/SET Request Latencies and Overall Through-

put in Memcached Figure 7 shows the average GET/SET

request latencies for the baseline workload with different

replacement policies and different Memcached cache sizes.

The average GET request latencies are all about 220 µs.

When dealing with GET requests, Memcached will send the

return value right after the hash table lookup. Changing the
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Figure 8: Overall throughput (ops/sec) for the Baseline Single Size

Workload.

priority of the requested key-value pair in the replacement

data structure happens after sending the GET response. Thus

the complexity of the replacement policy won’t affect the

GET request latency. However, the complexity will still af-

fect the CPU usage in the Memcached server. On the other

hand, the average SET request latencies for GD-PQ keep

increasing as the Memcached cache size increases. In con-

trast, the average SET latencies for LRU and GD-Wheel are

the same under different cache sizes. This difference is be-

cause the complexity of the replacement policy affects the

SET request latency. Compared to the constant time com-

plexity of LRU and GD-Wheel, GD-PQ’s logarithmic time

complexity makes the SET request latency increase as cache

size increases.

Figure 8 shows the overall throughput of the Memcached

server for the baseline workload with different replacement

policies and cache sizes. Compared to LRU, GD-Wheel in-

troduces a throughput reduction of about 2% that is constant

across the different cache sizes. This overhead is mainly in-

troduced by the extra data structure manipulation for the Hi-

erarchical Cost Wheels. On the other hand, GD-PQ exhibits

throughput reduction that keeps increasing as cache size in-

creases (from 9.5% to 12.5%). This indicates that GD-PQ

introduces increasing CPU overhead on both GET and SET

requests. As the above results show that LRU and GD-Wheel

outperform GD-PQ, we will only present results for LRU

and GD-Wheel in the rest of this evaluation. Also, we will

only use the 25 GB cache size. We did, however, perform all

of the following experiments on GD-PQ and the replacement

decisions made by GD-PQ were exactly the same as GD-

Wheel. It’s just the latency and throughput in Memcached

that are different.

Average Read Access Latency Since there is no database

layer in our experiments, we calculate the overall application

read access latency as follows. We use the average GET

request latency (220 µs) measured by YCSB as the cache hit

latency, and we use the recomputation cost as the additional

miss latency. For the smallest recomputation cost, 10, we

represent it as twice the hit latency (440 µs). As a result,

each unit of cost represents 44 µs and we represent other

recomputation costs based on this rate.
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Figure 9: Average Application Read Access Latencies (µs) for the

Single Size Workloads.
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Figure 10: Normalized Total Recomputation Cost for the Single

Size Workloads.

Figure 9 shows the average application read access la-

tency for each workload, including the extra latency for re-

computations. The results show that GD-Wheel greatly re-

duces the average application read access latency, by an av-

erage of 33% and as much as 53%. Results for workloads

2 and 3 show that GD-Wheel is beneficial under the cost

variations of RUBiS and TPC-W. As would be expected, the

two replacement policies have the same latency for work-

load 4, where all key-value pairs have the same cost. Results

for workloads 6 to 9 show that changing the key-value pair

sizes does not affect the performance of GD-Wheel. GD-

Wheel provides similar improvements in workloads 1 and

10. This shows that changing the precision within the same

cost group won’t affect the performance of GD-Wheel. The

variations between different clustering cost groups are more

important to GD-Wheel’s performance.

Reduction of Total Recomputation Cost The reason for

the average read access latency improvement is that GD-

Wheel greatly reduces the total recomputation cost, in other

words the extra access latency on cache misses. Figure 10

shows the normalized total recomputation cost for LRU and

GD-Wheel. All the numbers for LRU are set to 100 and the

numbers for GD-Wheel are normalized to the total recompu-

tation cost for LRU. The results show that GD-Wheel greatly

reduces the total recomputation cost, by an average of 74%

and as much as 90%. For workload 4 where all objects have

the same cost, both policies have the same total recomputa-
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Figure 11: 99th Percentile Application Read Access Latencies (µs)

for the Single Size Workloads.
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Figure 12: CDF of Recomputation Costs for the Single Size Work-

load 1 Baseline.

tion cost. For all the other workloads, GD-Wheel reduces the

total recomputation cost by at least 66%.

Tail Read Access Latency Tail read access latency is crit-

ical to large-scale Web services [13]. Figure 11 shows the

99th percentile application read access latency. The results

show that GD-Wheel greatly reduces the 99th percentile ap-

plication read access latency, by an average of 69% and as

much as 85%. For workload 5 with random cost, GD-Wheel

keeps the 99th percentile latency as low as 4136 µs, while

LRU’s 99th percentile latency is as high as 14476 µs. For all

the other workloads, GD-Wheel keeps the tail latencies no

larger than 1364 µs, while LRU’s tail latencies have a huge

variation among different workloads.

CDF of Recomputation Costs The reason for the tail read

access latency improvement is that GD-Wheel avoids large

recomputation costs. Figure 12 show the cumulative distri-

bution function (CDF) of recomputation costs for workload

1. All of GD-Wheel’s misses belong to the lowest cost group,

while LRU have misses that fall into all three cost groups.

GET Hit Rate We recorded the GET hit rate for both LRU

and GD-Wheel. Overall, the hit rates achieved by LRU and

GD-Wheel differ by no more than 0.18% among all work-

loads. This shows that under the Zipf request distribution,

GD-Wheel achieves a similar hit rate as LRU.

6.4.2 Multiple Size Workload Results

Average Read Access Latency Figure 13 shows the av-

erage application read access latency for each workload,
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Figure 13: Average Application Read Access Latencies (µs) for the

Multiple Size Workloads.

1 Ba
selin

e
2 RU

BiS
3 TP

C-W

Geo
. Me

an

Workload

0

20

40

60

80

100

120

140

160

To
ta
l 
R
e
co

m
p
u
ta
ti
o
n
 C
o
st

 

LRU

LRU+Orig

GD-Wheel

GD-Wheel+Orig

GD-Wheel+New

Figure 14: Normalized Total Recomputation Cost for the Multiple

Size Workloads.

including the extra latency for recomputations. In all three

workloads with both LRU and GD-Wheel, the original re-

balancing policy didn’t move any slabs, since there is no slab

class with zero evictions (LRU+Orig and GD-Wheel+Orig

in the figure). Nonetheless, there is still some improvement

achieved by GD-Wheel alone. This is because there ex-

ists a small cost variation in each of the three cost groups

(10-30, 120-180, and 350-450). However, our cost-aware

rebalancing policy combined with GD-Wheel achieves a

much greater improvement than using GD-Wheel alone.

Compared to LRU with the original rebalancing policy,

GD-Wheel with the cost-aware rebalancing policy (GD-

Wheel+New in the figure) greatly reduces the average ap-

plication read access latency, by an average of 37% and as

much as 56%.

Reduction of Total Recomputation Cost Figure 14 shows

the normalized total recomputation cost for both LRU and

GD-Wheel, with the original and cost-aware rebalancing

policies. All the numbers for LRU are set to 100 and the

other numbers are normalized to the total recomputation cost

for LRU. As explained before, the original rebalancing pol-

icy didn’t migrate any slabs in all the three workloads. Thus

the total recomputation cost is unchanged. GD-Wheel alone

takes the cost information in each slab class into consider-

ation and achieves reasonable reductions. In addition, GD-

Wheel with the cost-aware rebalancing policy, compared to

LRU, greatly reduces the total recomputation cost by an av-

erage of 68% and as much as 79%.

1 Ba
selin

e
2 RU

BiS
3 TP

C-W

Geo
. Me

an

Workload

0

2000

4000

6000

8000

10000

9
9
th
 %
ile
 A
cc
e
ss
 L
a
te
n
cy
 (
µ
s)

 

LRU

LRU+Orig

GD-Wheel

GD-Wheel+Orig

GD-Wheel+New

Figure 15: 99th Percentile Application Read Access Latencies (µs)

for the Multiple Size Workloads.

Reduction
Avg. Read Tail Read Total Recomputation

Latency Latency Cost

Single Avg. 33% 69% 74%

Single Max 53% 85% 90%

Multiple Avg. 37% 73% 68%

Multiple Max 56% 83% 79%

Table 4: Results Summary for Single and Multiple Size Workloads.

Tail Read Access Latency Figure 15 shows the 99th per-

centile application read access latency. The results show that

GD-Wheel with the cost-aware rebalancing policy greatly

reduces the 99th percentile application read access latency,

by an average of 73% and as much as 83%. In workload 1,

GD-Wheel alone achieves the same improvement on tail ac-

cess latency as GD-Wheel with the cost-aware rebalancing

policy. This is because most of the key-value pairs in work-

load 1 (80%) reside in the slab class with lowest average

cost, thus the tail latency could be improved without rebal-

ancing. In the other two workloads, the cost-aware rebalanc-

ing policy provides additional improvement on tail access

latencies.

6.5 Results Summary

Table 4 summarizes the average and maximum reductions on

average read latency, tail read latency, and total recomputa-

tion cost for both single and multiple size workloads. Results

for single size workloads show that the GD-Wheel replace-

ment policy could provide better performance than LRU un-

der real-world cost variations. GD-Wheel combined with

the cost-aware rebalancing policy achieves similar improve-

ments in the multiple size workloads as GD-Wheel alone in

the single size workloads. This shows that the cost-aware

rebalancing policy exploits the cost information among dif-

ferent slab classes and provides cost-aware rebalance deci-

sions.

7. Related Work

The GD-Wheel replacement policy presented in this paper

is built upon the GreedyDual algorithm [31]. The Greedy-

Dual algorithm has been adopted for cost-aware replace-
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ment policies in different storage and caching systems. How-

ever, to the best of our knowledge, this paper is the first

to propose and evaluate a cost-aware replacement policy

for memory-based key-value stores with amortized constant

complexity. This section presents related work in three di-

mensions: cache replacement algorithms, different applica-

tions of the GreedyDual algorithm, and improvements on in-

dividual key-value storage nodes.

Cache Replacement Algorithms Cache replacement algo-

rithms attempt to minimize various cost metrics, such as

miss ratio, total cost, and average latency. Popular cache re-

placement algorithms [9, 17, 22, 25] aim to maximize the

hit ratios. However, these replacement algorithms, unlike

GreedyDual, do not consider the cost of each cached item.

Although these algorithms are good choices for solving the

paging problem where the cost is the same, these algorithms

are not necessarily as good as GreedyDual for solving the

weighted caching problem.

Applications of The GreedyDual Algorithm Cao et al.

introduced the best known implementation of the Greedy-

Dual algorithm. In addition, they introduced GreedyDual-

Size which takes size into consideration [11]. Cao et al.

applied GreedyDual-Size to a proxy cache and results show

that GreedyDual-Size achieves improvement on hit ratio,

byte hit ratio, and network costs. Pai et al. introduced a

simple, practical strategy for locality-aware request dis-

tribution (LARD) [27]. They examined both LRU and

GreedyDual-Size algorithms in the back-end’s memory

caches and GreedyDual-Size achieves higher throughput

than LRU. PAST is a large-scale peer-to-peer persistent stor-

age utility [28]. For the cache management, PAST’s cache

replacement policy is based on the GreedyDual-Size algo-

rithm. Results show that GreedyDual-Size performs better

than LRU in terms of global cache hit ratio and average

number of routing hops.

The above related work applied the GreedyDual-Size al-

gorithm to various different caching systems. In our GD-

Wheel replacement policy, we didn’t take the object size

into consideration because Memcached separates objects of

different sizes into different allocation classes and primarily

performs replacement within an allocation class.

In an earlier workshop version of this paper, we presented

some results for a preliminary of implementation of GD-

Wheel. To the best of our knowledge, that workshop pa-

per was the first paper to argue for the use of cost-aware

replacement policies in key-value stores [18]. Compared to

that workshop paper, this paper describes an implementation

of GD-Wheel with smaller metadata, provides a comparison

to the best-known implementation of the GreedyDual algo-

rithm (GD-PQ), and presents a new cost-aware rebalancing

policy.

Recently, Ghandeharizadeh et al. introduced CAMP,

which implements an efficient approximation to the GreedyDual-

Size algorithm for key-value stores [16]. CAMP stores key-

value pairs in different LRU-ordered queues according to

their cost-to-size ratios. To find the key-value pair with the

least priority across all of the LRU queues, CAMP main-

tains a priority queue that tracks the priority of the key-value

pair at the head of every LRU queue. To limit the number

of LRU queues and the size of the priority queue, CAMP

uses a rounding technique so that key-value pairs of approx-

imately the same cost-to-size ratio are stored in the same

LRU queue. In contrast to CAMP, GD-Wheel implements

the exact GreedyDual algorithm. GD-Wheel uses the exact

cost information provided by clients. The replacement de-

cisions made by GD-Wheel are exactly the same as the the

best-known implementation of the GreedyDual algorithm

(GD-PQ).

Improving Individual Key-Value Stores FAWN-DS is a

high-performance key-value storage system built on the

FAWN cluster architecture [7]. The FAWN architecture—

a Fast Array of Wimpy Nodes—is designed to couple

low-power, efficient embedded CPUs with flash storage to

provide fast, efficient, and cost-effective access to large,

random-access data. FAWN-DS consists of an in-memory

hash table index and an on-flash log-structured datastore. By

using relatively slow CPUs with a limited memory capac-

ity, FAWN-DS provides over an order of magnitude more

queries per Joule than conventional disk-based systems.

SILT (Small Index Large Table) is a memory-efficient,

high-performance flash-based key-value store that combines

the features of previous work described above [19]. It re-

quires only 0.7 bytes of DRAM per entry and retrieves key-

value pairs using on average 1.01 flash reads each. SILT uses

a series of three basic key-value stores, each with a different

emphasis on memory-efficiency and write-friendliness, and

an analytical model for tuning the system to meet different

workload needs.

RAMCloud is a DRAM-based storage system that pro-

vides fast crash recovery, rather than storing replicas in

DRAM [26]. RAMCloud keeps all data in DRAM all the

time with full performance potential and inexpensive dura-

bility. It uses a log-structured storage in DRAM and scatters

backup data across disks over the cluster.

Masstree is a persistent in-memory key-value database

with particular optimizations for short and simple queries [21].

It uses a variation of B+ trees to support range queries and

applied optimizations for cache locality and optimistic con-

currency control. Consistency and durability are provided by

logging and checkpointing.

MemC3 is a redesign of the Memcached key-value store

to achieve high concurrency and space-efficiency [14]. Its

optimistic cuckoo hashing exploits CPU cache locality to

minimize the number of memory fetches and overlap those

fetches with different levels of parallelism. Its optimistic

locking provides high-performance access to shared data

structures while ensuring consistency. Its CLOCK-based

eviction policy improves space efficiency and concurrency.
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MICA is an in-memory key-value store that provides con-

sistently high throughput and low latency for read/write-

intensive workloads with a uniform/skewed key popular-

ity [20]. MICA provides fast and scalable parallel data ac-

cess by using data partitioning and exploiting CPU paral-

lelism. The network stack achieves zero-copy request pro-

cessing by interfacing with NICs directly. New memory al-

location and indexing in MICA exploits workload properties

to accelerate performance with simplified memory manage-

ment.

To improve the throughput and reduce the CPU overhead

of key-value stores, several works implement Memcached

over RDMA on soft-iWARP [29] or Infiniband [23].

8. Conclusions

This paper has shown that there exist significant cost vari-

ations among the computation results cached in key-value

stores. Consequently this paper has argued that key-value

stores should provide the option for clients to include the

cost information via SET requests, and take such cost varia-

tions into replacement decisions.

As a demonstration, this paper has introduced a new cost-

aware replacement policy, GD-Wheel, which is an imple-

mentation of the GreedyDual algorithm with amortized con-

stant time complexity per operation. GD-Wheel is a more

efficient implementation of the GreedyDual algorithm than

the previous best known implementation. It could be easily

configured to support a reasonable cost range at run-time.

GD-Wheel is not only for key-value stores. It could also be

applied to any caching systems where cost variations exist.

This paper has described the implementation of GD-

Wheel in the Memcached key-value store. In addition, this

paper has also proposed a new cost-aware slab rebalancing

policy for the Memcached slab allocator. In all of our exper-

iments, GD-Wheel and the cost-aware rebalancing policy

greatly reduced the total recomputation cost. As a result, our

approach greatly improves the performance of web applica-

tions in terms of average and tail access latencies.
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