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ABSTRACT
To maximize profit and connect users to relevant products and ser-
vices, search advertising systems use sophisticated machine learn-
ing algorithms to estimate the revenue expectations of thousands
of matching ad listings per query. These machine learning compu-
tations constitute a substantial part of the operating cost, e.g., 10%
to 30% of the total gross revenues. It is desirable to cache and reuse
previous computation results to reduce this cost, but caching intro-
duces approximation which comes with potential revenue loss. To
maximize cost savings while minimizing the overall revenue impact,
an intelligent refresh policy is required to decide when to refresh the
cached computation results. The state-of-the-art manually-tuned
refresh heuristic uses revenue history to assign different refresh
frequencies. Using the gradient boosting regression tree algorithm
with well selected features, we introduce a rapid prediction frame-
work that provides refresh decisions at higher accuracy compared to
the heuristic. This enables us to build a prediction-based refresh pol-
icy and a cache achieving higher profit without manual parameter
tuning. Simulations conducted on the logs from a major commercial
search advertising system show that our proposed cache design
reduces the negative revenue impact (0.07×), and improves the cost
savings (1.41×) and the net profit (1.50∼1.70×) compared to the
state-of-the-art manually-tuned heuristic-based cache design.
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1 INTRODUCTION
Search advertising has become a market of tens of billions of dollars
per year. Search advertising publishers, such as Google AdWords
and Bing Ads, aim to accurately connect users with products and
services matching their interests, and earn revenue from advertisers
based on the pay-per-click model (advertisers only pay publish-
ers when users click the ads). To better predict user behavior and
maximize ad click revenue, search advertising systems estimate the
expected revenue of thousands of matching ad listings per query
using various machine learning algorithms [14, 15, 20].

Machine learning-based ads selection provides accurate match-
ings between users and advertisers. However, as the number of
users, ad candidates, and features increase, the dollar cost of ma-
chine learning computations becomes an increasing portion of the
cost of search advertising systems [14]. We study one week of pro-
duction traces, with billions of queries, from Bing’s advertising
system. Workload analysis shows that the machine learning algo-
rithms occupy hundreds of machines for tens of milliseconds to
select the ads for each query. Caching the computation results (list
of selected ads) of machine learning algorithms could reduce the
amount of computation for processing ads, thus reducing infras-
tructure cost and potentially improving the net profit.

Effective caching for ads systems is, however, challenging be-
cause the ads selected for a previous query may not be those with
the best expected revenue for the current query, which could reduce
revenue. For example, two users from different states searching
for “local furniture store” likely expect different results, and two
users with different ages may have different preferences on “classic
movies”. Other queries may be invalidated by the progression of
time; for example, a product release may cause a shift in expecta-
tions for query results for, e.g., “screen pixel”.

The decision about whether a cached result is applicable to a
new query depends on both the key used to cache it (i.e., does the
retrieval key include the same query phrase (and the same user
info)?), as well as a determination of whether the previously cached
results are still applicable to the new query (i.e., does the cache
entry needs a refresh?). In this paper, we assume based upon prior
work [18] that results are cached based upon the query phrase
(optionally combined with personalization features), and use both
recency as well as various features to determine whether or not a
cached computation result should remain valid.

An ideal refresh policy is revenue-aware: it refreshes only if there
will be revenue loss due to serving stale ad suggestions. However,
it is hard to predict the revenue loss and make accurate refresh
decisions because: (1) There are many involved features from the
historical statistics, the incoming query and user, and the cached
previous computation result. It is hard to choose which ones and
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how they jointly affect revenue; (2) The average click-through rate
(CTR) is as low as 2 − 3%, making it easy to trigger false positive or
false negative refresh decisions [1]; (3) The refresh decision must
be made quickly, since the whole ads selection process must finish
in tens of milliseconds. These challenges make it difficult to build a
profitable cache with intelligent refresh policy.

Recently, Li et al. proposed an ads cache for search advertising
systems using domain-specific heuristics [18]. The refresh heuristic
assigns different refresh frequencies so that query phrases with
nonzero revenue history have a more aggressive refresh frequency.
In addition, the cache combines the query phrase and three person-
alization features (location, gender, age of user) as the cache key
for cache entries with nonzero revenue history. This increases the
freshness of cached ads selection results and mitigates additional
revenue loss.

Although this cache design improves the net profit (compared
to the case without cache), there are several limitations in terms of
performance and usability. First, the cache considers only four fea-
tures (revenue history and three user features) which is a very small
feature set and may reduce the accuracy of refresh decisions. Sec-
ond, using a refresh frequency to determine whether or not refresh
at next few subsequent queries is not sufficient because queries
with the same key could still have very different revenue expec-
tations. We need to make dynamic refresh decision at each query.
Third, adding personalization to the cache key reduces not only the
revenue loss but also the cost savings. Due to the limitations above,
the cache sacrifices the total cost savings with many unnecessary
cache refreshes in order to achieve a low revenue impact and a
net profit improvement. In addition, the incorporated heuristics
require nontrivial manual tuning of parameters such as refresh
frequencies to achieve better performance. If the workload changes,
these parameters must be re-tuned to keep the same performance.

To improve accuracy and eliminate manual tuning, we propose
to use a rapid machine learning algorithm to predict the revenue
loss by caching for each query with a richer set of 29 features from
the incoming query, the cached entry, and the historical statistics.
Based on the gradient boosting regression tree algorithm [12], we
build a fast prediction framework that is able to predict whether
or not using cached ads would reduce revenue. This prediction
framework has rapid prediction time, fast training time, and low
storage requirement. Using this prediction framework, we are able
to make accurate refresh decision per query and build a prediction-
based ads cache that provides better net profit improvement without
any parameter tuning.

We evaluate the proposed prediction-based cache by simulations
on production traces from Bing Ads, a major commercial search
advertising system. The state-of-the-art manually-tuned heuristic-
based cache design can reduce cost by up to 17% while having
negative revenue impact as bad as −0.29%. In comparison, the pro-
posed prediction-based cache can reduce cost by up to 24% while
capping negative revenue impact at −0.02%. Based on Microsoft’s
earnings release for FY16 Q4, the heuristic-based cache would in-
crease the net profit of Bing Ads by $20.7 to $70.5 million in the
quarter, while our proposed cache could increase the net profit by
$35.2 to $106.1 million.

The contributions of this work are threefold: (i)Workload and fea-
ture analysis of production advertising system logs (§3); (ii) Design
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Figure 1: Simplified workflow of how Bing advertising sys-
tem serves ads to users.

and evaluation of the prediction framework (§4); and (iii) Evalua-
tion of the proposed prediction-based cache design via simulations
over production system logs (§5).

2 BACKGROUND AND RELATEDWORK
2.1 Search advertising systems
Figure 1 plots the simplified workflow of Bing Ads as an example to
show how a search advertising system serves ads to search queries,
and how the proposed prediction-based cache works. Advertis-
ers provide Bing Ads their ad listings together with the bidding
budgets, targeting keywords/user groups, and various constraints
(spatial, temporal, contextual). These data are stored in an ads pool
partitioned across hundreds of servers.

When a user’s search query arrives, the initial candidate selection
selects ads with matching targeting keywords and user groups (e.g.,
location, gender, etc.) from the ads pool. For the keyword matching
process, Bing Ads provides both exact matching and approximate
matching that leverages different machine learning algorithms to
match similar keywords so that advertisers are able to show their
ads to more users. There are normally thousands of ads selected
from the candidate selection.

Second, the scoring-based selection scores candidate ads and
selects tens of them with the highest scores. The score depends on
both the advertiser’s bidding budget and the ad’s quality. Bing Ads
measures ad quality by three factors: the predicted click-through
rate, the ad relevance, and the landing page (the webpage pointed
by the ad) experience. Click-through rate represents the click proba-
bility. Ad relevance represents the relevance between the ad landing
page, the search query, and the user. The landing page experience
represents the likelihood of the user to get good experience on the
landing page. Due to the complexity of the scoring function and
the varied user behaviors, search advertising systems leverage dif-
ferent complex learning algorithms to optimize this scoring-based
selection [14, 15, 20].

Last, tens of ads with the highest scores are sent to the final
auction process. The auction determines the position of each ad, and
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how much will be charged when an ad is clicked by the user. This
process is always required, as advertisers’ ad listings and bidding
budgets change dynamically.

Due to the huge input size and the number of involved features,
both the candidate and scoring-based selection consume enormous
computation cost as we study in Section 3. To reduce this cost,
we propose to use the prediction-based ad-serving cache between
the scoring-based selection and the final auction. The cache is
essentially a key-value store where the key is the query phrase
(optionally combined with other features) and the value is the
selected ads from scoring-based selection. On cache miss, ads are
selected from the candidate and scoring-based selections and then
inserted into cache. On cache hit, the cache first uses the prediction
framework to predict the revenue loss by serving the cached ads. If
the predicted value is lower than a threshold, the cached ads are
sent to the final auction. Otherwise the cache refreshes the cached
ads just as the cache miss case.

2.2 Related work
2.2.1 Caching for sponsored search andweb search. There is little

work on caching systems for sponsored search. A recent work [18]
proposes a heuristic-based cache for advertising systems using three
domain-specific caching mechanisms: the revenue-aware adaptive
refresh policy assigns varied refresh frequencies based on the rev-
enue history; the selective personalization policy adds three person-
alization features to cache keys for entries with nonzero revenue
history; the ads list merging technique combines the ads list from
multiple previous computation results of the same query phrase, re-
ducing the likelihood of missing revenue-critical ads. As described
in introduction, the refresh heuristic and key personalization pol-
icy have several limitations in terms of refresh decision accuracy
and nontrivial parameter tuning. On the other hand, the ads list
merging technique is orthogonal to any refresh policy and can be
applied to our prediction-based cache as well.

Besides sponsored search, recent works also study caching sys-
tems for web search engines. Several works incorporate different
processing costs and various features into caching strategies [9, 13,
22, 23]. Some works focus on reducing the cache staleness by using
a time-to-live (TTL) value to invalidate cache entries [4, 5, 7, 8, 10].
Other works study hybrid cache designs that apply different caching
strategies to queries with different characteristics [6, 11, 21]. These
works in web search consider similar features (e.g., cost and user
information) and the same intuition about reducing cache staleness
compared to caching systems for search advertising systems. How-
ever, since the business models of web search and sponsored search
are quite different, these cache designs do not consider revenue-
related performance thus cannot be directly applied to search ad-
vertising systems.

2.2.2 Prediction framework for sponsored search and web search.
Our work differs from frameworks in which machine learning
algorithms are used to predict the click-through rate and other
performance metrics of the candidate ads in search advertising sys-
tems [14, 15, 20]. These prediction frameworks aim to maximize the
ad click revenue without considering the computation cost of each
prediction. Compared to these prediction frameworks, our work
aims to find the best tradeoff decisions between cost savings and

revenue impact in order to maximize the net profit of the whole sys-
tem. To do so, our prediction framework has different performance
requirements in terms of accuracy and latency overhead.

In web search, recent works study fast prediction frameworks
to predict the execution time of search queries and assign differ-
ent parallelization decisions based on the predictions [16, 17, 19].
These prediction frameworks enable the web search engine to accu-
rately predict the long-running queries and reduce the tail latency
by parallelization. These works motivate us to use rapid machine
learning algorithms to solve the caching problem for search adver-
tising systems. Since the performance objectives (latency reduction
v.s. profit improvement) are different, our prediction framework
has different design in terms of prediction objective and feature
selections compared to those recent works in web search.

3 WORKLOAD ANALYSIS
3.1 General workload
We analyze a slice of the Bing advertising system logs containing
billions of queries from Mon Jun 5th 2017 to Sun Jun 11th 2017.
Since the daily workloads have the same characteristics, we focus
on presenting the analysis for Wed Jun 7th, which is the same day
we use for experimental evaluation in Section 5. Among the logs we
analyze, the Bing advertising system receives hundreds of millions
of query requests every day. The query phrase frequency distri-
bution is highly skewed: top 1% distinct query phrases contribute
to 59% of the total query requests, while the tail query phrases
have only 1 or 2 occurrences. This demonstrates an opportunity
for caching that even a small cache could achieve a high hit rate.

Every day only about 3% of queries end up with ad clicks, which
means that 97% of learning computations result in no revenue. This
is similar to the 1.9% average click-through rate among 2367 Google
AdWords advertisers in a recent study [1].

To illustrate the cost of the candidate selection and scoring-based
selection, we use the input size of scoring-based selection as the
cost indicator. Higher cost indicator means more advertisements
to be considered by the learning algorithms, thus the computation
cost will increase as well. On average, each query request has thou-
sands of matching ad candidates, which takes tens of milliseconds
for hundreds of machines to compute the scoring-based selection
result. Based on this cost indicator distribution and the number of
dedicated machines, the total learning cost of search advertising
systems would typically be around 10% to 30% of the total revenue.
This cost distribution shows that the learning-based ads selection
requires substantial computation power. It’d be preferable to use
caching to reduce the number of dedicated machines and the overall
cost.

3.2 Revenue-related features
To accurately predict the revenue loss by caching, it’s important to
include revenue-related features in the prediction framework. The
historical average revenue for each distinct query phrase is a good
candidate, since it indicates the potential revenue for queries with
the same phrase. Figure 2 illustrates the CDF of average revenue for
each query phrase. Due to business confidentiality, the average rev-
enue numbers in the figure are normalized by multiplying the same
constant coefficient. Only 1.6% of the distinct query phrases have
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Figure 2: CDF of normalized average ad click revenue for
each distinct query phrase. The x-axis numbers are normal-
ized by multiplying the same constant coefficient. Note the
y-axis starts at 0.98. Outliers (≤ 100) are truncated on the
right end of the figure.
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Figure 3: CDF of normalized average expected CPC for each
query request. Normalization uses the same multiplication
coefficient as Figure 2. Note the y-axis starts at 0.55. Outliers
(≤ 329) are truncated on the right end of the figure.
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Figure 4: CDF of throttling level for each query request. Note
the y-axis starts at 0.18.

ads clicked. Moreover, the largest average revenue (100) is much
higher than the smallest nonzero average revenue. This shows that
the potential revenue of distinct query phrases is highly skewed.

Since only 1.6% of distinct query phrases have revenue, it seems
that it’s possible to just not cache any requests belonging to those
query phrases. However, since some of those query phrases have
very high frequency (a query phrase may havemany query requests,
but only a few percent of requests end up with ad clicks), these
1.6% of query phrases contribute to 30% of the total requests. Thus,
only predicting the potential revenue of each distinct query phrase
is not enough. At each query, we need to predict the revenue loss
when using the cached ads list (computed at last refresh) to serve
the query. We need additional features that indicate the expected
revenue of the cached ads list and the “real" ads list (the new ads
list computed after refreshing the cache).

For the cached ads list, we choose the average expected cost-
per-click (CPC) to indicate the expected revenue. The expected
cost-per-click for each ad is the expected revenue when the ad is
clicked, computed by multiplying the advertiser’s bid with the click
probability. Then we take the average of all cached ads’ expected
CPC as the revenue indicator. One thing to note is that the expected
CPC is computed conditionally when serving the previous request.
Thus this average expected CPC is not the exact expected revenue
when serving the cached ads to another query. However, it’s still a

helpful approximation of the expected revenue of the cached ads.
Figure 3 illustrates the CDF of normalized average expected CPC
for the ads selection of each query. More than 55% of query requests
have nonzero expected CPC, and the distribution is highly skewed.

When predicting the revenue loss by caching, the “real" ads
list for the incoming query is not yet computed since we haven’t
decided whether refresh the cached ads or not. Thus we use a
different signal, the throttling level, as the revenue indicator for the
incoming query when we don’t use the cache. The throttling level
of each incoming query is an abstract integer level that indicates the
correlated approximate expected revenue. It is currently used for
capacity throttling in BingAds so that we could prioritize on serving
queries with higher expected revenue when there is a capacity
shortage. Unlike CPC which calculates the expected revenue of
the selected ads, the throttling level is aggregated from different
learning-based revenue predictions using signals from the incoming
query (query phrase, phrase category, user information, etc.) and
history information such as revenue history. Since throttling level
must be computed quickly, it doesn’t take the current ad candidates
into consideration. However, it’s still a helpful approximation of the
expected revenue of the incoming query. Figure 4 illustrates the CDF
of throttling level for each query request. Larger throttling level
indicates larger expected revenue. As the average historical revenue
and average expected CPC above, the throttling level distribution is
also highly skewed: more than 73% of total requests have throttling
levels no larger than 20, while the other 27% of total requests have
varied throttling levels from 21 to 200.

If the expected revenue indicated by the throttling level is much
higher than the average expected CPC, it means that the expected
revenue of the incoming query is much higher than the expected
revenue of the current cached ads, and the potential revenue loss
could be large as well. By incorporating the average expected CPC
and the throttling level features, we are able to compare the ex-
pected revenue of the cached ads list and the “real" ads list in the
prediction framework.

Analysis above show that the average revenue history, the av-
erage CPC of cache entries, and the throttling level of incoming
queries are useful features to predict the revenue loss by caching.
The state-of-the-art refresh heuristic only takes the average revenue
history into consideration. In contrast, we incorporate all three fea-
tures in our prediction framework and measure the importance of
each feature in Section 4.

3.3 The intrinsic variance of learning
algorithm results

Compared to traditional caching, one of the biggest differences for
the ad-serving cache is that the cached learning algorithm results
(pre-auction ads list) have intrinsic variance. For two search queries
with the same query phrase, the ads selected by the learning algo-
rithms may vary for three main reasons: (1) Users differ in terms of
location, gender, age and so on. This variance affects the decisions
of advertisers and publishers; (2) On the advertiser side, ad listings
may be removed or added, and the bid budget may change based
on different features (time, user location, user gender, etc.); (3) On
the publisher side, several different machine learning algorithms
are used for ads selection that use the user and advertiser above as
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features. Due to this variance of ads list, it’s practically impossible
to cache an ads list for a certain query phrase and then use the
cached entry forever without refresh.

As described above, different user information affects the deci-
sions of advertisers and publishers. As a result, queries with the
same query phrase and different user information may have dif-
ferent expected revenue. We investigate the requests with one of
the top profitable query phrase and the combination of four user
features: location, gender, age, and device type. For each distinct
user info combination, we compute the average revenue of the
corresponding queries. Similarly, this average revenue distribution
is also highly skewed: more than 94% of distinct user info com-
binations have no revenue, while the others have varied average
revenue. This shows that when building the prediction framework,
it could be beneficial to take the user information of both the cached
ads list (at last refresh) and the incoming query into consideration.

4 PREDICTION FRAMEWORK
We use the gradient boosting regression tree algorithm [12] to build
a rapid, accurate and flexible prediction framework that predicts
the potential revenue loss by caching. This section presents the
requirements, features, and empirical evaluations of the prediction
framework.

4.1 Requirements
We desire three attributes in the prediction framework: accuracy,
prediction overhead, and flexibility. We use the standard metrics of
prediction, namely precision (|A ∩ P |/|P |) and recall (|A ∩ P |/|A|),
where A is the set of true queries with revenue loss, and P is the set
of predicted queries with revenue loss when using the cache ads.

Accuracy. Given an incoming query and the corresponding cached
ads, we want the prediction framework to predict whether using
the cached ads to serve the query would lead to revenue loss or
not. The difficulties of this prediction problem come from two as-
pects: (1) Biased sample set. Only about 3% of queries have ad click
revenue [1]. (2) Intrinsic uncertainty of user click behavior. In fact,
for the same pair of query and ads, different users may have quite
different click behaviors. Even for the same user who searches the
same query multiple times, they may either click or not click on
the same ads. This large intrinsic uncertainty means that the upper
bound of classification accuracy would be low. Since the average
revenue per click is much higher than the average computation
cost per query, a false negative prediction is much more harmful
to net profit than a false positive prediction. Thus recall is a more
important metric than precision in this problem.

Prediction overhead. The latency overhead involved in perform-
ing prediction must be small to keep the interactive nature of web
search. Prediction itself adds additional work to the advertising
system, since we will still perform the machine learning-based ads
selection if the prediction shows that using cached result lead to
revenue loss. Since the ads serving execution takes tens of millisec-
onds, we set the latency budget of the prediction framework at less
than one millisecond.

Flexibility. Since we have different requirements on precision
and recall, the ability to adjust the threshold of defining queries

Feature Description Storage Overhead

ThrottleLevel Throttling level of incoming query None
QueryCategory Category id of incoming query None

Location1-5 Location of incoming query’s user None
(5 levels, 1 denotes country)

Gender Gender of incoming query’s user None
Age Age group of incoming query’s user None

DeviceType Device type of incoming query’s user None

AvgCPC Average expected CPC of cached ads Per cache entry
Cost Cost indicator of last refresh Per cache entry

CLocation1-5 Location of cached ads’ user Per cache entry
(5 levels, 1 denotes country)

CGender Gender of cached ads’ user Per cache entry
CAge Age group of cached ads’ user Per cache entry

CDeviceType Device type of cached ads’ user Per cache entry
LastRefDur Duration gap between last refresh Per cache entry

and incoming query
LastRefFreq Occurrence gap between last refresh Per cache entry

and incoming query

AvgRev Average revenue per query Per query phrase w/ revenue
ClickPeriod Click period Per query phrase w/ revenue
ClickFreq Click frequency Per query phrase w/ revenue
RefPeriod Refresh period Per query phrase
RefFreq Refresh frequency Per query phrase

AvgLossDur Duration-based average loss rate Per query phrase
AvgLossFreq Occurrence-based average loss rate Per query phrase

Table 1: Space of the features.

Feature Importance Feature Importance

AvgRev 1 CLocation5 0.02773
AvgCPC 0.28498 Location5 0.02318

ThrottleLevel 0.19877 QueryCategory 0.02148
Gender 0.07363 AvgLossFreq 0.01925

DeviceType 0.05106 AvgLossDur 0.01558
RefPeriod 0.05100 Location4 0.01313

ClickPeriod 0.03050 Age 0.00995
ClickFreq 0.02877

Table 2: Top-15 features ranked by the importance obtained
from boosted regression tree.

with nontrivial revenue loss allows the predictor to adapt to vary-
ing workload and different performance requirements. We thus
abstract the prediction as a regression problem (of estimating the
revenue loss by caching) rather than a classification problem (of de-
ciding whether serving the query with cached ads lead to nontrivial
revenue loss or not).

4.2 Features
Arriving queries have features from the incoming query and user,
from the cached entry based on the cache entry key, and from the
historical statistics based on the query phrase. In this section, we
describe the features that can be used for prediction and analyze
the importance of the features.

4.2.1 Space of features. We investigate 29 features that mean-
ingfully correlate with the potential revenue loss by caching, which
we categorize into incoming query features, cached entry features,
and statistic features as listed in Table 1. To keep the prediction
framework fast enough and limit the storage overhead, we select a
subset of features that commonly exist in any search advertising
system and have high impact on ads selection in Bing Ads.
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Incoming query features. Incoming query features describe the
incoming query and user. We use the throttling level described
in Section 3.2 to represent the potential revenue of the incoming
query, and use an internal query category id to distinguish different
query phrases. We select location, gender, age, and device type
to describe the incoming user. The location includes features at
5 levels, where level 1 denotes country and higher levels denote
smaller geographical regions. Since these features come with the
incoming query, they do not incur storage overhead.

Cached entry features. Cached entry features describe the cached
ads and the previous user at last refresh of ads selection result. We
use the average expected CPC described early on to represent the
expected revenue of the cached ads, and we use the cost indicator
to describe the number of matching ad listings at last computation.
Since the cached ads were selected for a different user, we use the
same set of features to describe the user at the previous computation.
We use two additional features to describe when was the last refresh
of the cached ads. These features require storage overhead for each
cache entry.

Statistic features. Statistic features describe the historical statis-
tics for each query phrase. We use the average revenue per query
and click period/frequency to represent the revenue history. We
also use refresh period/frequency to describe refresh history. In
addition, we use two average loss rate numbers to represent the
changing rate of ads selection over time. For two ads lists A and
B from two consecutive refreshes, the loss rate is computed by
(1 − |A ∩ B |/|A ∪ B |)/(duration or occurrence gap between two
refreshes). All the statistic features above are aggregated using only
the training data, not including the whole history log and the test
data. On the other hand, we keep updating these statistics using the
past query information during the cache simulation. These features
require storage overhead for each distinct query phrase.

4.2.2 Feature analysis. This section studies which features are
good predictors of revenue loss by caching. As a metric, we use per-
feature gain from boosted regression tree, where the importance
of a feature is proportional to the total error reduction per split
in the tree. Table 2 shows the 15 most important features, with
each importance normalized to the highest value. We observe that
the top 3 features are all directly related to revenue history or
expected revenue. Although the throttling level is the only feature
that has the knowledge of all revenue history, it is only the 3rd most
important feature in our experiments. This is because throttling
level is designed only to predict the approximate expected revenue
level (with only 200 levels), not the precise expected revenue. The
next two top features are gender and device type of the incoming
user, as female users and PC users tend to have higher expected
revenue in some traffic. The highest level location of both incoming
user and previous are also helpful since local advertisers tend to
spend bid budget at only neighboring regions.

4.3 Empirical evaluation
To find the ground truth revenue loss for training data built from
the history log, we need to estimate the revenue loss when serving
a different cached ads list to a query. We estimate this revenue loss
by aggregating the revenue of ads clicked by the user in history that

Precision (%) Recall (%)

All features 5.02 83.82
Top 15 features 4.80 82.26
Top 3 features 4.03 74.39

Heuristic-based[18] 0.52 51.47

Table 3: Prediction accuracy of prediction framework with
different feature sets, comparing with the state-of-the-art
manually-tuned heuristic.

Training Avg prediction Storage overhead per
time (s) overhead (µs) 1 million phrases (GB)

All features 71 170 43.9
Top 15 features 50 154 25.7
Top 3 features 17 122 5.7

Table 4: Training time, average prediction overhead, and
storage overhead of the prediction framework.

0 0.1 0.2 0.3 0.4 0.5
Predicted revenue loss

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

Queries with nonzero ground truth revenue loss
Queries with zero ground truth revenue loss

Figure 5: CDF of predicted revenue loss for queries with zero
and nonzero ground truth revenue loss.

are not included in the cached ads list. Although there exist more
accurate revenue loss estimations such as the auction simulation
we use in Section 5, such calculations take too long to compute thus
are not fit for fast model training. Thus we use a fast yet reasonable
calculation to build the training data.

To build the training data, we simulate an infinite-size cache over
the history log. For the first query of each distinct key (query phrase
with optional personalization information), we insert the selected
ads into the cache. For each following query, we first compute
the ground truth revenue loss based on the click history and the
cached ads, and generate the training entry row. Then we refresh
the cached ads if the ground truth revenue loss is positive or at the
20th cache hits as a conservative mandatory refresh. As a result we
get one row of training data per query and the whole training data
includes both zero and nonzero ground truth revenue loss. Despite
the overall click-through rate being only 2 − 3%, we choose not
to re-balance the training data since 1) there are still hundreds of
thousands of clicks in a hour; and 2) we want to keep the low-CTR
pattern in the training data just as the real workload.

We train the prediction framework using the Light Gradient
Boosting Machine (LightGBM) framework [2]. After training the
regression model, we need to determine the threshold that distin-
guish the queries with nontrivial revenue loss by caching so that
the prediction framework can decide when to refresh the cache
entry. To do so we compare the ground truth and predicted rev-
enue loss of the training data (or test data based on other log). As
plotted in Figure 5, we find that for any feature sets we test, there
always exists a threshold value (close to the minimum prediction
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value) where most (e.g., 80%) of the queries with zero ground truth
revenue loss have predicted revenue loss less than the threshold,
and vice versa. Thus we are able to find the threshold by a simple
binary search. Using any threshold with lower value would greatly
harm the accuracy of the prediction framework. On the other hand,
a slightly higher threshold has marginal effect on the accuracy
since the remaining queries, with either zero or nonzero ground
truth revenue loss, have predicted revenue loss much higher than
the threshold (i.e., it’s very difficult to distinguish those remaining
queries by the prediction framework with any threshold).

We collect 3 hour log to get hundreds of millions of training
entries, and perform 5-fold cross validation with 5 repetitions to
avoid biased results. We compare the accuracy of the prediction
framework with the state-of-the-art heuristic-based approach. For
the heuristic-based approach, we use the last one day log before
the training to build the list of query phrases with nonzero revenue
history, and use aggressive refresh frequencies and personalized
cache keys for those phrases. Using more history log to build the list
would improve the accuracy of the refresh heuristic. However, based
on our experiments using more than one day log only marginally
improves accuracy due to the diminishing returns on number of
frequent query phrases with nonzero revenue.

Table 3 presents the average of precision and recall for the pre-
diction framework with different feature sets, comparing with the
accuracy of the state-of-the-art heuristic-based approach. As ex-
pected, the precision is much lower than the recall. This is because
(1) we have different requirements on the two metrics, and (2) it is
very hard to make a perfect prediction due to the low click-through
rate and huge intrinsic uncertainty in user behavior. On the other
hand, low precision is acceptable since false positive errors have
no/small effects on the gross revenue/net profit, respectively. For
the prediction framework, using the top 15 features has similar
accuracy to using all features. On the other hand, using only the
top 3 features reduces the accuracy but still outperforms the re-
fresh heuristic, since the refresh heuristic only use average revenue
history and three incoming user information as features.

Table 4 compares the training time, average prediction overhead
per query, and storage overhead per one million distinct query
phrases when using different feature sets. All the numbers are
measured when running the prediction framework on a single
machine with Intel Xeon E5-2680 v2. As expected, using fewer
features reduces all three metrics. On the other hand, all approaches
achieve rapid prediction with acceptable storage requirements.

5 EVALUATION
5.1 Simulation setup
To evaluate the proposed prediction-based cache design, we build
a cache simulator based on the production logs of Bing advertising
system. To make an apples-to-apples comparison, we setup the
evaluation platform similar to the one used by the state-of-the-art
heuristic-based approach [18]. Each timestamped log entry rep-
resents the information related to a single search query request:
the query phrase, the personalization features (location, gender,
age and device type of the user), cost indicator, pre-auction ads list
(output of scoring-based selection and the ads list we want to cache
as well), which ads got clicked and the corresponding revenues. The

cache simulator reads log entries chronologically, makes caching
decisions (insertion, eviction, refresh) based on the heuristics or the
prediction, and evaluates the caching performances. We simulate
the logs onWed Jun 7th 2017 which is the same as what we analyzed
in Section 3. We simulate a cache with LRU replacement policy and
one million entries, which is large enough to cache the top query
phrases. Since the value of each cache entry stores an ads list with
variable numbers of ads, cache entries may have different sizes.
However, each ad in the list only takes a few kilobytes including
the corresponding metadata.

5.2 Implementation of caching mechanisms
We implement and evaluate three different cache designs. First
we build a domain-agnostic traditional cache with a fixed-rate
refresh so that each cache entry will refresh at 5th cache hits as
a moderate refresh rate. (We test different refresh rates and all
cases end up with huge revenue loss.) This cache doesn’t consider
the wall clock time when making refresh decisions because our
experiments show that adding consideration of wall clock time
doesn’t have significant effect on revenue impact reduction. At last,
this cache doesn’t consider any personalization information and
the key of each cache entry is the query phrase itself.

Then we replicate the state-of-the-art heuristic-based cache
which incorporate three domain-specific caching mechanisms [18].
All the parameters are configured the same as described in the pre-
vious work. First, the revenue-aware adaptive refresh policy assigns
different refresh frequencies based on the revenue history of the
previous day. Cache entries without revenue history have a fixed
refresh frequency of 20; cache entries with revenue history have
a dynamic refresh frequency that starts from 1 (always refresh)
and then increments/decrements based on the similarity between
the cached ads list and refreshed ads list. Second, the selective
personalization policy combines query phrase and personalization
information as the cache entry key for the query phrases with rev-
enue history. Third, the ads list merging technique combines the
ads list from multiple previous computation results of the same
cache key.

Finally we build the proposed prediction-based cache. We use 3
hours of logs (19-22PM) on Jun 6th (the day before cache simula-
tion) to build the training data and train the prediction framework
using the LightGBM framework [2]. We use the next one hour log
(22-23PM) as test data to adjust the threshold as described in Sec-
tion 4.3. Using longer training data would improve the accuracy of
the prediction framework. We decide to train with 3 hours because
(1) we want to show that using a relatively short period of training
data is already enough to train an accurate and stable model for
several days, and (2) our experiments show that using more train-
ing data has marginal caching performance improvements for our
cache simulations.

We use this trained prediction framework to predict the revenue
loss by caching during caching simulation at each cache hit. If the
predicted revenue loss is lower than the threshold, we serve the
cached ads without refresh. We use only query phrase as cache
entry key since it maximizes the performance of prediction-based
cache. More precisely, our experiments show that adding person-
alization of cache keys to the proposed cache doesn’t help much
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on avoiding additional revenue impact but greatly reduces the to-
tal cost savings. This is because the prediction framework already
takes the personalization features into consideration when marking
refresh decisions.

5.3 Performance metrics
To compare the performance of different caching design, we use
four performance metrics as below.

1. Hit rate. Hit rate is one of the basic caching performance
metrics. When a refresh is triggered at cache hit, we count it as a
cache miss since the refresh requires the candidate selection and
scoring-based selection to update the cached ads list.

2. Percentage of cost saving. We calculate the caching cost saving
by total accumulated cost indicator on cache hits divided by total
accumulated cost indicator over all queries. The higher cost saving
the better. For the prediction-based cache, we also need to take the
cost of prediction framework into consideration. Since each ads
selection on cache miss takes tens of milliseconds (on hundreds of
machines) and each prediction takes less than 200 microseconds (on
a single machine), we estimate that the total prediction cost should
be nomore than 1% of total ads selection cost when there is no cache.
Thus we always subtract the cost saving by 1% for the prediction-
based cache case. This also shows that using perdition-based cache
design doesn’t add significant cost to the caching system compared
to the heuristic-based design.

3. Revenue impact. It is impossible to exactly calculate the rev-
enue impact of caching in simulations, since we don’t know user’s
action when the presented ads are changed. To scientifically es-
timate the revenue impact of caching, we use an offline auction
simulator available in Bing Ads to simulate the whole auction pro-
cess. When we use a cached ads list to serve a query, the auction
simulator uses a click prediction framework to recalculate the click
probability for each cached ad based on the current query and user.
When a cached ads list computed for a user is served to another
user with different features such as gender and age, the predicted
click probability will drop. We use this revenue impact calculation
when comparing different cache designs in Section 5.4.

As an alternative calculation, we also consider a pessimistic
revenue impact calculation as described in the state-of-the-art
work [18]. This calculation only count the ad click revenue if the
clicked ads are cached on cache hits. We use this deterministic
revenue impact calculation as a post analysis in Section 5.5.1.

4. Net profit impact. The net profit equals the total revenue sub-
tracted by the total cost. As mentioned in Section 3, 0.1 to 0.3
would be a representative range of learning cost-to-revenue ratio
for search advertising systems. Since there exists other operation
cost for Bing Ads, we present the net profit impact as absolute val-
ues: The total revenue of Bing Ads for fiscal year 2016 4th quarter
is $1465.85 million based on Microsoft earnings release [3]. Thus
we calculate the expected net profit impact for the quarter as (total
revenue × pessimistic revenue impact) + (total revenue × cost-to-
revenue ratio × cost saving).
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Figure 6: Hit rate, cost saving, and revenue impact for
naive fixed refresh rate, heuristic-based cache, and proposed
prediction-based cache. For all the numbers the higher the
better.
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Figure 7: Net profit impact at different cost-to-revenue ratios
(0.1 to 0.3 as representative range). When there is no cache
the profit impact is zero.

5.4 Comparing different cache designs
We evaluate the three cache designs based on the cache simulations
and the auction simulations. Figure 6 illustrates the hit rates, cost
savings, revenue impacts, and Figure 7 illustrates the net profit
impacts for the three cache designs. The cache with fixed rate
refresh has high hit rate (40.1%) and high cost saving (30.7%), but
the revenue impact is as bad as−5.16% since no revenue information
is considered at caching. As a result, this cache leads to a net profit
impact of −30.6 to 59.4 million dollar for Bing Ads in FY16 Q4
(based on 0.1 to 0.3 cost-to-revenue ratio).

The state-of-the-art heuristic-based cache greatly improves the
revenue impact from −5.16% to −0.29%. On the other hand, both the
hit rate (21.4%) and cost saving (17.0%) are dropped since the cache
uses a very aggressive refresh strategy to avoid revenue impact.
Eventually this cache has a net profit impact of 20.7 to 70.5 million
dollar.

Compared to the heuristic-based cache design, the proposed
prediction-based cache is able to achieve a better revenue impact
(−0.02%) with much higher hit rate (45.1%) and cost saving (24.2%).
This is because the prediction framework is able to accurately pre-
dict the revenue loss by caching. Overall the prediction-based cache
uses 87% less refreshes compared to the heuristic-based cache. For
those query phrases that don’t have revenue history in last day, the
prediction-based cache makes much less false negative errors (no
refresh at revenue loss) since it takes additional features such as
throttling level and personalization features into considerations.
For those query phrases with revenue history, the prediction-based
cache makes much less false positive errors (refresh at no revenue
loss) since it doesn’t simply apply an aggressive refresh frequency,
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Figure 8: Hit rate, cost saving, and revenue impact for
prediction-based cachewith different feature sets. The corre-
sponding net profit impacts are: $29.8 to $93.4 million, $34.6
to $105.0 million, and $35.2 to $106.1 million.

but makes separate refresh decision at every query. Eventually the
prediction-based cache is able to greatly reduce revenue impact
with less cache refreshes and no personalization for the cache entry
keys.

Compared to the cache with fixed refresh rate, the prediction-
based cache has higher hit rate but lower cost saving. This is because
the prediction framework predicts that queries with higher cost
on cache miss tend to have higher revenue loss expectation. Our
proposed cache design achieves the best net profit impact of 35.2
to 106.1 million dollar. In addition to the representative cost-to-
revenue ratio range between 0.1 to 0.3, we also plot in Figure 7
the cases for even smaller or larger cost-to-revenue ratios. The
traditional cache provides better net profit at higher cost-to-revenue
ratio since it has the most cost savings. However, the prediction-
based cache dominates the net profit improvement at any ratio.

5.5 Post analysis
5.5.1 Alternative revenue impact calculation. The offline auction

simulator we use for the revenue impact calculation is not a public
tool. Different revenue impact prediction algorithms may produce
different numbers. Thus we also consider an alternative pessimistic
revenue impact calculation as described in Section 5.3. Under this
calculation, the traditional cache with fixed refresh has a revenue
impact as bad as -15.2%. The heuristic-based cache has a revenue
impact of -2.5%, which is similar to the number reported in the
previous work. On the other hand, the proposed prediction-based
cache has a revenue impact of -1.0%. Using this pessimistic revenue
impact calculation leads to higher revenue impact for all approaches.
But the proposed prediction-based cache is still able to provide the
least revenue impact.

5.5.2 Comparing different feature sets. Weevaluate the prediction-
based cache with different feature sets as illustrated in Figure 8.
Using top 15 features has nearly the same performance compared
to using all features. However, using only the revenue-related top
3 features lead to a slightly worse performance. This shows that
other top features such as information of the incoming user and the
previous user on refresh are still beneficial to caching performance.
On the other hand, all the three cases outperform the previous
heuristic-based cache design.

5.5.3 Temporal stability of the prediction framework. To evaluate
the temporal stability of the prediction framework, we use 3 hour
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Figure 9: Hit rate, cost saving, and revenue impact for
prediction-based cache with different training data. The cor-
responding net profit impacts are: $34.3 to $104.2 million,
$34.9 to $105.5 million, and $35.2 to $106.1 million.

log from three different days before cache simulation to build the
training data. As illustrated in Figure 9, using training data from
different days doesn’t have much different caching performance.
This shows that a prediction framework built from 3 hour log is
able to accurately predict the revenue loss in at least next 3 days.
This also implies that the proposed features in our framework are
representative to capture the stable patterns in terms of revenue
expectations.

6 CONCLUSION
Complex machine learning algorithms enable search advertising
systems to select the best ads from a large candidate pool thus im-
prove the total gross revenues. On the other hand, these expensive
computations bring huge operation cost for all traffics regardless
of the revenue expectations. Previous work aims to use heuristics
with nontrivial tuning to build a cache, but the limited feature se-
lection lead to a strategy that sacrifices the cost savings to avoid
revenue loss. We propose and build a fast prediction framework
to predict the revenue loss by caching, and use it to guide cache
refresh decisions. Compared to the state-of-the-art heuristics, our
cache is able to improve the cost saving (from 17% to 24%), the
revenue impact (from −0.29% to −0.02%), and the net profit impact
(from [$20.7, $70.5] million to [$35.2, $106.1] million) based on
simulation results on traces from Bing Ads.

Our work reassures the advantages of using fast machine learn-
ing algorithms instead of manually-tuned heuristics to solve perfor-
mance tradeoff questions in the search advertising context. These
machine learning techniques enable us to incorporate a rich selec-
tion of features, measure the importance of each feature, and use
the top features to make fast and accurate decisions without param-
eter tuning. These advantages make it preferable to use machine
learning techniques to solve complex performance problems that
are difficult for heuristics to find better solutions.
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