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Abstract

Scalable training of large models (like BERT
and GPT-3) requires careful optimization rooted
in model design, architecture, and system ca-
pabilities. From a system standpoint, commu-
nication has become a major bottleneck, espe-
cially on commodity systems with standard TCP
interconnects that offer limited network band-
width. Communication compression is an im-
portant technique to reduce training time on such
systems. One of the most effective methods is
error-compensated compression, which offers ro-
bust convergence speed even under 1-bit com-
pression. However, state-of-the-art error com-
pensation techniques only work with basic opti-
mizers like SGD and Momentum SGD, which
are linearly dependent on the gradients. They
do not work with non-linear gradient-based opti-
mizers like Adam, which offer state-of-the-art
convergence efficiency and accuracy for mod-
els like BERT. In this paper, we propose 1-bit
Adam that reduces the communication volume
by up to 5⇥, offers much better scalability, and
provides the same convergence speed as uncom-
pressed Adam. Our key finding is that Adam’s
variance (non-linear term) becomes stable during
training, hence we can run Adam in the beginning
(warmup phase) and use it as a precondition for
Momentum SGD during the rest of the training
(compression phase). Experiments on up to 256
GPUs show that 1-bit Adam enables up to 3.3⇥
higher throughput for BERT-Large pre-training
and up to 2.9⇥ higher throughput for SQuAD
fine-tuning. In addition, we provide theoretical
analysis for our proposed work.
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1. Introduction
Modern advancement of machine learning is heavily driven
by the advancement of computational power and techniques.
Nowadays, it is not unusual to train a single model using
hundreds of computational devices such as GPUs. As a re-
sult, scaling up training algorithms in the distributed setting
has attracted intensive interests over the years. One impor-
tant direction is communication efficient distributed train-
ing, which enhances the scalability of the training system by
reducing the communication cost. Example techniques in-
clude quantization (Zhang et al., 2017; Wangni et al., 2018),
decentralization (Lian et al., 2017; Koloskova* et al., 2020;
Li et al., 2018), and asynchronous communication (Zheng
et al., 2016; Chaturapruek et al., 2015).

One widely used strategy for alleviating the communication
overhead is gradient compression. Before communication,
the original gradient g will be compressed into C![g], where
C![·] is the compress operator1. As a result the communi-
cation volume could be greatly reduced. However, this
gradient compression could slow down the convergence
speed because important information might get lost during
the compression. To recover this information lost, error-
compensated compression strategy was proposed: Instead of
compressing the gradient at t-th iteration directly, we would
first add back the compression error from the last step and
then do the compression. Recent studies (Stich et al., 2018)
observed that by using error-compensated compression, the
asymptotic convergence speed remains unchanged for SGD
even using 1-bit compression.

On the other hand, many state-of-the-art models have to be
trained using a more complicated variant, Adam (Kingma
and Ba, 2014). For example, to train models such as BERT,
one has to resort to the Adam optimizer, since training it
with vanilla/momentum SGD has been shown to be less
effective. Unfortunately, we find that error-compensated
compression does not work for Adam, because Adam is
non-linearly dependent on the gradient which affects the
error compensation mechanism (see Section 3.2 and 4.2 for
more details).

1C![·] could also include randomness.
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In this paper, we first analyze the limitation of directly ap-
plying existing compression technique to Adam. One of
our key findings is that Adam’s variance (the non-linear
term) becomes stable at early stage of training (Section 3.3).
This motivates us to design a new 2-stage algorithm, 1-bit
Adam, which uses Adam (warmup stage) to “pre-condition”
a communication compressed momentum SGD algoirthm
(compression stage). We provide theoretical analysis on
communication compressed momentum SGD, which is the
core component of 1-bit Adam. We design a custom collec-
tive primitive using MPI to transfer the 5⇥ communication
volume reduction (achieved by our algorithm) into actual
runtime speedup, which is hard to accomplish using exist-
ing DL framework libraries. Experiments with BERT-Base,
BERT-Large, SQuAD 1.1 and ResNet-18 training tasks on
up to 256 GPUs show that 1-bit Adam converges as fast
as uncompressed Adam, and runs up to 3.3⇥ faster than
uncompressed algorithms.

(Contributions) We make the following contributions:

• We propose a new algorithm, 1-bit Adam, a com-
munication efficient momentum SGD algorithm pre-
conditioned with Adam optimizer, which to the best
of our knowledge is the first work that apply a pre-
conditioned strategy for compressed momentum SGD.
We present theoretical analysis on the convergence of 1-
bit Adam, and show that it admits the same asymptotic
convergence rate as the uncompressed one.

• We conduct experiments on large scale ML tasks that
are currently challenging for SGD to train. We show
that on both BERT pre-training, SQuAD fine-tuning
and ResNet-18, 1-bit Adam is able to achieve the same
convergence behaviour and final accuracy as Adam,
together with up to 5⇥ less communication volume
and 3.3⇥ faster end-to-end throughput (including the
full-precision warmup stage). To our best knowledge,
this is the first distributed learning algorithm with com-
munication compression that can train a model as de-
manding as BERT.

• We implement a custom collective communication
primitive using Message Passing Interface (MPI) to
provide a scalable and efficient communication system
for 1-bit Adam.

• The 1-bit Adam optimizer and the communication
primitive backend have been open sourced in a deep
learning optimization library called DeepSpeed2.

2. Related Work
Communication-efficient distributed learning: To fur-
ther reduce the communication overhead, one promising

2https://github.com/microsoft/DeepSpeed

direction is to compress the variables that are sent between
different workers (Yu et al., 2019; Ivkin et al., 2019). Previ-
ous work has applied a range of techniques such as quanti-
zaiton, sparsification, and sketching (Alistarh et al., 2017;
Agarwal et al., 2018; Spring et al., 2019; Ye and Abbe, 2018;
Shi et al., 2021). The compression is mostly assumed to be
unbiased (Wangni et al., 2018; Shen et al., 2018; Zhang
et al., 2017; Wen et al., 2017; Jiang and Agrawal, 2018).
A general theoretical analysis of centralized compressed
parallel SGD can be found in Alistarh et al. (2017). Beyond
this, some biased compressing methods are also proposed
and proven to be quite efficient in reducing the communi-
cation cost. One example is the 1-bit SGD (Seide et al.,
2014), which compresses the entries in gradient vector into
±1 depends on its sign. The theoretical guarantee of this
method is given in Bernstein et al. (2018).

Error-compensated compression: The idea of using er-
ror compensation for compression is proposed in Seide
et al. (2014), where they find that by using error compensa-
tion the training could still achieves a very good speed even
using 1-bit compression. Recent study indicates that this
strategy admits the same asymptotic convergence rate as the
uncompressed one (Stich et al., 2018), which means that the
influence of compression is trivial. More importantly, by
using error compensation, it has been proved that we can
use almost any compression methods (Stich et al., 2018),
whereas naive compression could only converge when the
compression is unbiased (the expectation of the compressed
tensor is the same as the original). This method can be com-
bined with decentralized training (Vogels et al., 2020), local
SGD (Xie et al., 2020), accelerated algorithms (Gorbunov
et al., 2020). Due to the promising efficiency of this method,
error compensation has been applied into many related area
(Zheng et al., 2019; Phuong and Phong, 2020; Yu et al.,
2019; Shi et al., 2019; Ivkin et al., 2019; Sun et al., 2019;
Basu et al., 2019; Vogels et al., 2019) in order to reduce the
communication cost.

Adam: Adam (Kingma and Ba, 2015) has shown promis-
ing speed for many deep learning tasks, and also admits a
very good robustness to the choice of the hyper-parameters,
such as learning rate. It can be viewed as an adaptive method
that scales the learning rate with the magnitude of the gradi-
ents on each coordinate when running SGD. Beyond Adam,
many other strategies that that shares the same idea of chang-
ing learning rate dynamically was studied. For example,
Duchi et al. (2011) (Adagrad) and (Tieleman and Hinton,
2011) (RMSprop), use the gradient, instead of momen-
tum, for updating the parameters; Adadelta (Zeiler, 2012)
changes the variance term of Adam into a non-decreasing
updating rule; Luo et al. (2019) proposed AdaBound that
gives both upper bound and lower bound for the variance
term. In Alacaoglu et al. (2020); Liu et al. (2020) authors
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develop a novel analysis for the convergence rate of Adam.

3. Motivation and Insights
3.1. Communication overhead affects the efficiency of

distributed training

To demonstrate the opportunity for communication compres-
sion, we conduct performance profiling experiments that
measures the impact of communication time with respect to
the total training time per step. Here we use BERT-Large
pre-training task as an example (sequence length 128, de-
tailed training parameters can be found at Section 7.1), since
BERT and transformer models in general are the state-of-
the-art approaches in natural language processing and many
other areas. We evaluate two different kinds of clusters:
the first cluster has 4 NVIDIA Tesla V100 GPUs per node,
and different nodes are connected by 40 Gigabit Ethernet
(effective bandwidth is 4.1 Gbps based on iperf benchmark);
the second cluster has 8 V100 GPUs per node, and differ-
ent nodes are connected by 100 Gigabit InfiniBand EDR
(effective bandwidth is close to theoretical peak based on
microbenchmark). We perform BERT-Large pre-training
using the two clusters with different number of nodes and
GPUs, batch sizes, and gradient accumulation steps. And
we measure the average latency of forward, backward (allre-
duce and everything else), and step function calls. Table 1
presents the profiling results.

Results show that allreduce communication contributes to
a great portion of the training time per step, up to 94% and
75% for our experiments on two different kinds of inter-
node networks. As expected, communication overhead is
proportionally larger when the number of nodes is larger,
when the batch size/gradient accumulation step is smaller,
and when the network bandwidth is lower. These are the
situations where communication compression could provide
the most benefit.

3.2. Basic compression affects Adam’s convergence

Given the great opportunity for communication compres-
sion, we investigate whether existing error-compensated
gradient compression strategy can be applied to Adam,
an important optimization algorithm for large model dis-
tributed training. We implement a basic compression
strategy for Adam based on the compression-based SGD
approach (Stich et al., 2018), where we perform error-
compensated 1-bit compression over the gradient, and up-
date both the momentum and variance based on the com-
pressed gradient. We compare the BERT-Large pre-training
(sequence length 128) training loss when using vanilla
Adam and Adam with our basic compression strategy in
Figure 1.

Results show that basic compression based on existing work

Figure 1. Training loss for BERT-Large pre-training using vanilla
Adam and Adam with error compensated gradient compression.

greatly affects the convergence speed for Adam. The main
reason is that Adam is non-linearly dependent to the gradi-
ents (see Section 4.2 for more details). This motivates us
to look for novel compression strategy that overcomes the
non-linear gradient dependency challenge, and at the same
time achieves the same convergence speed as Adam.

3.3. Adam’s variance becomes stable during training

Unlike SGD, which directly uses the gradient g to update
the model x, Adam uses two auxiliary variables m and v
for the update. The mathematical updating rule of original
Adam can be summarized as:

mt+1 =�1mt + (1� �1)gt

vt+1 =�2vt + (1� �2)(gt)
2, (1)

xt+1 =xt � �
mt+1p
vt+1 + ⌘

Here xt is the model at t-iteration, gt = rF (xt; ⇣t) is the
stochastic gradient, � is the learning rate, ⌘ usually is a very
small constant, �1 and �2 are decaying factor that controls
the speed of forgetting history information. Notice here we
disable the bias correction term in the original Adam, which
is consistent with exact optimizer for training BERT (Devlin
et al., 2019).

Here we refer mt as the momentum term and vt as the vari-
ance term. Notice that when vt is changed into a constant v,
then Adam becomes equivalent to Momentum SGD under a
coordinate-dependent learning rate �p

v+⌘
.

To investigate the non-linear gradient dependency chal-
lenge, we analyze Adam’s variance during BERT-Large
pre-training (seqlen 128). At each step, we fuse the vari-
ance of all parameters, and calculate the norm of the fused
variance. Figure 2 presents this fused variance norm at each
step. Results show that the variance norm becomes stable
after around 23K steps. This motivates our approach 1-bit
Adam to “freeze” the Adam variance after it becomes stable,
and then use it as a precondition during 1-bit compression
stage.
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Table 1. BERT-Large pre-training sequence 128 profiling results.
Cluster Num. Num. Batch Batch Grad Forward Backward Backward Step allreduce%

Network node GPU size per size accum. (ms) allreduce everything (ms)
Type GPU step (ms) else (ms)

Ethernet 16 64 1 64 1 36.65 2205.86 33.63 74.96 94%
Ethernet 16 64 16 1024 1 35.71 2275.43 60.81 75.59 93%
Ethernet 16 64 16 4096 4 137.80 2259.36 243.72 74.92 83%
Ethernet 8 32 16 512 1 37.91 2173.35 60.71 75.63 93%
Ethernet 4 16 16 256 1 36.94 2133.24 62.82 76.85 92%
Ethernet 2 8 16 128 1 34.95 1897.21 61.23 75.26 92%
Ethernet 1 4 16 64 1 35.99 239.76 59.95 74.21 58%

InfiniBand 8 64 1 64 1 25.36 316.18 23.25 58.49 75%
InfiniBand 8 64 16 1024 1 32.81 336.40 59.99 57.79 69%
InfiniBand 8 64 16 4096 4 131.04 339.52 237.92 56.91 44%
InfiniBand 4 32 16 512 1 33.45 297.28 56.81 57.98 67%
InfiniBand 2 16 16 256 1 32.86 183.74 56.49 58.60 55%
InfiniBand 1 8 16 128 1 32.74 28.18 59.73 57.29 16%

Figure 2. Norm of fused variance for BERT-Large pre-training
using vanilla Adam. The y-axis is in log scale.

4. 1-bit Adam Algorithm
In this section, we start with some background introduction
for error compensated compression and why it is incom-
patible with Adam. Then we give full description of 1-bit
Adam.

Problem setting In this paper, we focus on the following
optimization task and rely on the following notions and
definitions:

min
x2Rd

f(x) =
1

n

nX

i=1

E⇣(i)⇠Di
F (x; ⇣(i))

| {z }
:=fi(x)

, (2)

where d is the dimension of the input model x, n is the
number of workers included, Di is the data distribution of
individual data sample ⇣(i) on the i-th worker, F (x; ⇣) is
the loss function.

Notations and definitions Throughout this paper, we use
the following notations:

• rf(·) denotes the gradient of a function f .

• f⇤ denotes the optimal value of the minimization prob-
lem (2).

• fi(x) := E⇣(i)⇠Di
F (x; ⇣(i)).

• k · k denotes the `2 norm for vectors and the spectral
norm for matrices.

• kXkA := Tr(X>AX).

• C!(·) denotes the randomized compressing operator.

•
p
· denotes the square root of the argument. In this

paper if the argument is a vector, then it returns a
vector taking the element-wise square root.

• (x)2 denotes the element-wise square operation if x is
a vector.

• a
b or a/b denotes the element-wise division opera-
tion if both a and b are vectors and their dimension
matches.

4.1. Why error compensation works for SGD

For SGD , since the update is linearly dependent to the gradi-
ent, using error compensation could potentially remove the
side-effect of the history compression error. The updating
rule of vanilla SGD follows

xt+1 =xt � �gt = x0 � �
tX

s=0

gs. (3)

When directly compressing the gradient without error com-
pensation, the updating rule becomes

xt+1 =xt � �C![gt] = xt � �(gt � �t)

=x0 � �
tX

s=0

gs + �
tX

s=0

�s

| {z }
history compression error

. (4)

As we can see in (4), the history compression error would
get accumulated and therefore slow down the convergence
rate. Moreover, previous work (Alistarh et al., 2017) in-
dicates that when using biased compression operator, the
training convergence cannot be guaranteed.
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Now if we apply error compensation at each compression
step, the updating rule becomes

xt+1 =xt � �C![gt + �t�1] = xt � �(gt � �t + �t�1| {z }
error cancellation

)

=x0 � �
tX

s=0

gs + �
tX

s=0

(�s � �s�1)

=x0 � �
tX

s=0

gs + ��t. (5)

This demonstrates that by using error compensation, each
step’s compression error would get cancelled in the next
step instead of getting accumulated over steps. To make the
error compensation work correctly, it is necessary that we
ensure an error cancellation term �t + �t�1 in the updating
rule. Below we are going to see that this cannot be achieved
for Adam.

4.2. Why Adam cannot be combined with error
compensation

As we can see, Adam is non-linearly dependent to the gradi-
ent, and this non-linearity is widely believed to be essential
for the superiority of Adam. Below we are going to first intu-
itively explain why error compensation works well for SGD,
and then discuss two major reasons why this non-linearity
makes Adam incompatible with error compensation.

Difficulty for estimating the variance term v. Notice
that for Adam, it is necessary to communicate the gradient
gt or momentum mt, and the variance term can be updated
using gt. However, when using error-compensated gradient
to update vt, the updating rule follows:

vt+1 =�2vt + (1� �2) (C![gt + �t�1])
2

=�2vt + (1� �2) (gt + �t�1 � �t)
2

=�2vt + (1� �2) (gt)
2 + (�t�1 � �t)

2

| {z }
non-linear error correction

+ 2hgt, �t�1 � �ti.

Here the quadratic term (�t�1 � �t)
2 cannot be cancelled by

itself, therefore it will be hard to get an accurate estimation
of vt with history error being cancelled.

Difficulty for setting the correction factor. Another
problem is that for SGD , when applying error compen-
sation under a time varying learning rate �t, we need to
compensate the history error using

C


gt +

�t
�t�1

�t�1

�
,

instead of adding back �t�1 directly. In this case, if we
view �p

vt+⌘ as a coordinate-dependent learning rate, which
makes Adam equivalent to Momentum SGD with time-
varying learning rate, we need to apply the scale factor
according to

mt+1 = C!


�1mt + (1� �1)gt +

p
vt�1 + ⌘
p
vt + ⌘

�t�1

�
.

The problem is that we cannot get the value of vt after the
compression, which makes it impossible to set the scale
factor for error compensation.

4.3. 1-bit Adam

Based on our findings (Section 3.3) that Adam’s variance
term becomes stable at an early stage, we propose 1-bit
Adam summarized in Algorithm 1. First we use vanilla
Adam for a few epochs as a warm-up. After the warm-up
stage, the compression stage starts and we stop updating
the variance term v and use it as a fixed precondition. At
the compression stage, we communicate based on the mo-
mentum applied with error-compensated 1-bit compression.
The momentums are quantized into 1-bit representation (the
sign of each element). Accompanying the vector, a scal-
ing factor is computed as magnitude of compensated gradient

magnitude of quantized gradient . This
scaling factor ensures that the compressed momentum has
the same magnitude as the uncompressed momentum. This
1-bit compression could reduce the 97% communication
cost of the original for float32 type training and 94% for
float16 type training.

5. Theoretical Analysis
Notice that for 1-bit Adam, we only use original Adam at
warm-up, and then we essentially run error-compensated
momentum SGD with coordinate-dependent learning rate

�p
v
Tw

. Therefore here we consider the Adam-based warm-

up phase as a way to find a good precondition variance term
vTw

to be used in the compression phase. Below we are
going to introduce the convergence rate for the compression
phase after warm-up. We first introduce some necessary
assumptions, then we present the theoretical guarantee of
the convergence rate for 1-bit Adam.
Assumption 1. We make the following assumptions:

1. Lipschitzian gradient: f(·) is assumed to be with L-
Lipschitzian gradients, which means

krf(x)�rf(y)k  Lkx� yk, 8x, 8y,

2. Bounded variance: The variance of the stochastic gra-
dient is bounded

E⇣(i)⇠Di
krF (x; ⇣(i))�rf(x)k2  �2, 8x, 8i.
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worker 1 worker 2 worker 3

(a) Gather step: Each worker sends its i-th chunk to
worker i.

worker 1 worker 2 worker 3

(b) Average step: Each worker averages all chunks
it receives.

worker 1 worker 2 worker 3

(c) Scatter step: Each worker receives the i-th
chunk from worker i.

Figure 3. Efficient system design for communication (compressed allreduce)

Algorithm 1 1-bit Adam
1: Initialize: x0, learning rate �, initial error � = 0, m0 = 0,

v0 = 0, number of total iterations T , warm-up steps Tw, two
decaying factor �1, �2 and ⌘ for Adam.

2: Running the original Adam for Tw steps, then store the vari-
ance term (defined as vt in (1)) vTw

.
3: for t = Tw, . . . , T do
4: (On i-th node)
5: Randomly sample ⇣(i)

t and compute local stochastic gradi-
ent g(i)

t := rFi(x
(i)
t , ⇣(i)

t ).
6: Update the local momentum variable mt�1 according to

m(i)
t = �1mt�1 + (1� �1)g

(i)
t .

7: Compress m(i)
t into m̂(i)

t = C!

h
m(i)

t + �(i)
t�1

i
, and up-

date the compression error by �(i)
t = m(i)

t + �(i)
t�1 � m̂(i)

t .
8: Send the m̂(i)

t to the server.
9: (On server)

10: Take the average over all m̂(i)
t it receives and compress it

into mt = C!

h
1
n

Pn
i=1 m̂

(i)
t + �t�1

i
, and update the

compression error accordingly by �t = 1
n

Pn
i=1 m̂

(i)
t +

�t�1 �mt.
11: Send mt to all the workers.
12: (On i-th node)
13: Set mt = mt , and update local model xt+1 = xt �

�mt/
p
vTw

.
14: end for
15: Output: x.

3. Bounded magnitude of error for C![·]: The magni-
tude of worker’s local errors �(i)t and the server’s
global error �t, are assumed to be bounded by a con-
stant ✏

nX

k=1

E!

����(i)t

���  ✏

2
,

nX

i=1

E!

���t
��  ✏

2
, 8t, 8i.

Next we present the main theorem for 1-bit Adam.

Theorem 1. Under Assumption 1, for 1-bit Adam, we have

the following convergence rate

✓
1� �L

vmin
� 2�2L2

(1� �)2v2min

◆ TX

t=0

Ekrf(xt)k2V

2Ef(x0)� 2f(x⇤)

�
+

6�2L2✏2T

(1� �)2v3min

+

L��2T

nvmin
+

2�2L2�2T

n(1� �)2v2min

, (6)

where V = diag
⇣
1/v(1)

Tw
, 1/v(2)

Tw
, · · · , 1/v(d)

Tw

⌘
is

a diagonal matrix spanned by vTw
and vmin =

min{v(1)
Tw

,v(2)
Tw

, · · · ,v(d)
Tw

} is the mimimum value in vTw

Given the generic result in Theorem 1, we obtain the con-
vergence rate for 1-bit Adam with appropriately chosen
learning rate �.

Corollary 1. Under Assumption 1, for 1-bit Adam, choos-
ing � = 1

4L(vmin)�1+�
p

T
n +✏

2
3 T

1
3 (vmin)�1

, we have the fol-

lowing convergence rate

1

Tvmin

T�1X

t=0

Ekrf(xt)k2V . �p
nT

+
✏

2
3

T
2
3

+
1

T
,

where we treat f(x1)� f⇤, � and L as constants.

This result suggests that: 1-bit Adam essentially admits
the same convergence rate as distributed SGD in the sense
that both of them admit the asymptotical convergence
rate O(1/

p
nT ), which means we can still achieve linear

speedup w.r.t. the number of workers n.

6. Efficient system design for compressed
communication

NVIDIA NCCL is an efficient and widely used communi-
cation library that has been tightly integrated in DL frame-
works like PyTorch and TensorFlow. However, NCCL li-
brary cannot be used directly for performing communication
based on 1-bit compression. This is because the collective
communication primitives like Allreduce and Allgather are
at a higher level of abstraction and can only perform data
movement and/or simple operations like sum, min, max etc.



1-bit Adam: Communication Efficient Large-Scale Training with Adam’s Convergence Speed

In addition, NCCL library (before v2.7) did not expose ei-
ther an Alltoall primitive or any point-to-point (send/recv)
communication primitives that can be used to implement
an Alltoall. Thus for 1-bit Adam, we designed a custom
collective primitive using Message Passing Interface (MPI).
We call it “compressed allreduce” and it has three phases as
shown in Figure 3: 1) The gather step, which we have im-
plemented using the MPI Alltoall (personalized exchange)
primitive, 2) The average step, where 1-bit Adam computes
the average of compressed local momentums, and 3) The
scatter step, which we implement using MPI Allgather. We
develop two versions of compressed allreduce: 1) CUDA-
Aware version that exploits GPUDirect features and requires
CUDA-Aware libraries like MVAPICH2-GDR and 2) Basic
version that can be used with any MPI library but copies data
between GPU and CPU buffers. The CUDA-Aware version
works only on systems with InfiniBand whereas the basic
version can run on any system with Ethernet interconnect.

7. Experiments
We evaluate 1-bit Adam and existing approaches using
BERT-Base, BERT-Large, SQuAD 1.1 and ResNet training
tasks on up to 256 GPUs. We show that 1-bit Adam con-
verges as fast as uncompressed Adam, and runs up to 3.3
times faster than uncompressed algorithms under limited
bandwidth.

7.1. BERT pre-training and fine-tuning

Dataset and models We evaluate the convergence and
performance of 1-bit Adam and uncompressed Adam for
BERT-Base (L = 12, H = 768, A = 12, 110M params)
and BERT-Large (L = 24, H = 1024, A = 16, 340M
params) pre-training tasks. We use the same dataset as
Devlin et al. (2019), which is a concatenation of Wikipedia
and BooksCorpus with 2.5B and 800M words respectively.
We use the GLUE fine-tuning benchmark(Wang et al., 2018)
to evaluate the convergence of the BERT models trained by
Adam and 1-bit Adam.

In addition, we also evaluate the convergence and perfor-
mance of 1-bit Adam for SQuAD 1.1 fine-tuning task3 using
a pre-trained BERT model checkpoint from HuggingFace4.

Hardware For all experiments in this Section 7.1 we use
the two clusters described in Section 3.1. We use up to
256 GPUs for pre-training tasks and up to 32 GPUs for
fine-tuning tasks.

Training parameters For BERT pre-training, the learn-
ing rate linearly increases to 4⇥ 10�4 as a warmup in the

3https://rajpurkar.github.io/SQuAD-explorer/
4https://github.com/huggingface/transformers

Table 2. Number of steps for BERT pre-training tasks.
Seqlen 128 Seqlen 512
(warmup) (warmup)

BERT-Base Adam 118K (N/A) 22K (N/A)
BERT-Base 1-bit Adam 118K (16K) 22K (1.5K)
BERT-Large Adam 152K (N/A) 10K (N/A)
BERT-Large 1-bit Adam 152K (23K) 10K (1.5K)

first 12.5K steps, then decays into 0.99 of the original after
every 520 steps. We set the two parameters in Algorithm 1
as �1 = 0.9 and �2 = 0.999 for 1-bit Adam and Adam.
For convergence test, we set total batch size as 4K for
BERT-Base and BERT-Large. For performance test, we test
different batch sizes. Table 2 summarizes the total number
of steps for BERT sequence length 128 and 512 phases,
together with the number of warmup steps for 1-bit Adam.
We manually tuned the number of warmup steps for 1-bit
Adam evaluations. On the other hand, we find that this
configuration can be auto-tuned: First, the number of 1-bit
Adam warmup steps should be no less than the number of
learning rate warmup steps, since Adam’s variance term is
unstable during LR warmup. Second, we find that the ratio
kvtk1

kvt��k1
(where k ·k1 is the l1 norm of the vector and we set

� = 1
1��2

) is a good indicator of how stable the variance
term is. For BERT-Large pre-training seqlen 128, when we
set a threshold of � 0.96 for this ratio, the warmup will stop
at step 22173, which is very close to our manualy tuned
23K warmup steps.

For GLUE benchmarks we use original Adam optimizer and
perform single-task training on the dev set. We search over
the hyperparameter space with batch sizes 2 {8, 16} and
learning rates 2 {1⇥ 10�5, 3⇥ 10�5, 5⇥ 10�5, 8⇥ 10�5}.
Other setting are the same as pre-training task.

For SQuAD fine-tuning we use the same parameters as pub-
lished by HuggingFace (batch size = 24, learning rate=3e�5,
dropout=0.1, 2 epochs), except that we increase the batch
size to 96 (using 32 GPUs). The first 400 steps out of total
1848 steps are used as the warmup stage for 1-bit Adam.

Convergence results Figure 4(a) presents the sample-
wise convergence results. We use the BertAdam (Devlin
et al., 2019) optimizer as the uncompressed baseline. For
both BERT-Base and BERT-Large and for both sequence
length phases, we find that 1-bit Adam provides the same
convergence speed as baseline, while the communication
volume is reduced into 6% of the original during the com-
pression stage.

Table 3 presents the GLUE results using the checkpoints
from our pre-training experiments. 1-bit Adam achieves
similar accuracy compared to the uncompressed baseline
and the numbers reported in previous work.

For SQuAD 1.1 fine-tuning task using checkpoint from
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Table 3. GLUE development set results. BERT-Base/Large(original) results are from Devlin et al. (2019). BERT-Base/Large (un-
compressed) results use the full-precision BertAdam with the same training parameters as the 1-bit Adam case. BERT-Base/Large
(compressed) are the results using 1-bit Adam. The scores are the median scores over 10 runs.

Model RTE MRPC CoLA SST-2 QNLI QQP MNLI-(m/mm)
BERT-Base (original) 66.4 84.8 52.1 93.5 90.5 89.2 84.6/83.4
BERT-Base (uncompressed) 68.2 84.8 56.8 91.8 90.9 90.9 83.6/83.5
BERT-Base (compressed) 69.0 84.8 55.6 91.6 90.8 90.9 83.6/83.9
BERT-Large (original) 70.1 85.4 60.5 94.9 92.7 89.3 86.7/85.9
BERT-Large (uncompressed) 70.3 86.0 60.3 93.1 92.2 91.4 86.1/86.2
BERT-Large (compressed) 70.4 86.1 62.0 93.8 91.9 91.5 85.7/85.4

(a) Sample-wise

(b) Time-wise

Figure 4. Sample-wise and time-wise convergence speed for BERT-
Large pre-training sequence length 128 using 64 GPUs on the
Ethernet cluster. 1-bit Adam and Adam also achieve the same
sample-convergence speed for BERT-Base pre-training.

HuggingFace, 1-bit Adam achieves similar F1 score (93.32)
compared to the score reported by HuggingFace (93.33)
using same number of samples and trainig parameters.

Performance results Computed as 1/(warmup ratio + (1 -
warmup ratio)/16) for FP16 training, 1-bit Adam offers up to
5x less end-to-end communication volume for BERT-Base
and BERT-Large. This leads to to 3.3x higher throughput
for BERT-Large sequence length 128 pre-training and up
to 2.9x higher throughput for SQuAD fine-tuning. This
end-to-end throughput improvement is enabled by the 5.48x
(Figure 5(a)) and 6.17x (Figure 5(c)) speedup observed
during the compression stage. Figure 5(b) shows that 1-bit
Adam also provides better scalability: Adam’s throughput
reaches peak at 32 GPUs on Ethernet, while 1-bit Adam’s
throughput keeps increasing until 128 GPUs. It is also worth
mentioning that 1-bit Adam on Ethernet (4.1 Gbps effective
bandwidth, 4 GPUs per node) is able to achieve comparable
throughput as Adam on InfiniBand (near 100 Gbps effective
bandwidth, 8 GPUs per node), which demonstrates 1-bit
Adam’s efficiency considering the hardware differences.

In Figure 4(b) we also measured the total training time of
BERT-Large pre-training seqlen 128 when using batch size
4K on 64 GPUs on the Ethernet cluster. It takes 174.3
hours for baseline Adam to complete the training, while
1-bit Adam only needs 51.5 hours. This 3.4x speedup is con-
sistent with the speedup computed based on the throughput
analysis above.

7.2. ResNet on CIFAR10 and ImageNet

To further evaluate the convergence speed of 1-bit Adam
and related works, we train CIFAR10 using ResNet-18(He
et al., 2016). The dataset has a training set of 50000 images
and a test set of 10000 images, where each image is given
one of the 10 labels. We run the experiments on 8 1080Ti
GPUs where each GPU is used as one worker. The batch
size on each worker is 128 and the total batch size is 1024.

We evaluate five implementations for comparison: 1) Orig-
inal SGD. 2) Original Adam (Kingma and Ba, 2014). 3)
1-bit Adam where we use 13 out of 200 epochs as warmup.
4) 1-bit Adam (32-bits) where we do not compress the mo-
mentum while still freezing the variance. 5) Adam(1-bit
Naive) where we compress the gradient instead of momen-
tum, and don’t freeze the variance. We set the learning rate
as 1 ⇥ 10�1 for SGD and 1 ⇥ 10�4 for the other 4 cases.
For all five cases, the learning rate is decayed into 10% of
the original after every 100 epochs.

As illustrated in Figure 6, 1-bit Adam achieves similar con-
vergence speed as Adam and 1-bit Adam (32-bits). SGD
has a slightly slower convergence speed while Adam(1-bit
Naive) is much worse. This and Section 3.2 demonstrate
that existing compression method doesn’t work for Adam.
In the supplementary materials we further compare 1-bit
Adam with other related works using ResNet-18.

Moreover, to see how 1-bit Adam could speedup the training
in this case, we report speedup results of training ResNet-
152 on ImageNet (Russakovsky et al., 2015) using differ-
ent numbers of GPUs, in Figure 7. As we can see that
1-bit Adam could potentially speedup the training especially
when the bandwidth is limited.
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(a) Bert-Large pre-training, batch size = number
of GPUs ⇥ 16

(b) Bert-Large pre-training, batch size = 4K (c) SQuAD fine-tuning, batch size =
number of GPUs ⇥ 3

Figure 5. Scalability of 1-bit Adam for BERT-Large pre-training sequence length 128 and SQuAD 1.1 fine-tuning on V100 GPUs. Adam
lines represent the throughput at 1-bit Adam’s warmup stage (i.e., baseline Adam’s throughput). 1-bit Adam lines represent the throughput
at compression stage. Annotations represent the highest speedup achieved in each figure. Note that this is the speedup between warmup
and compression stage. The end-to-end speedup also depends on the percentage of warmup.

(a) Training loss (b) Testing accuracy

Figure 6. Sample-wise convergence speed for ResNet-18.
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Figure 7. Speedup of ResNet-152 on ImageNet. Each server has 8
V100 GPUs interconnected by NVLink, servers are connected by
10Gbits or 1Gbits TCP/IP network.

7.3. Deep Convolutional Generative Adversarial
Networks

To further understand the correctness of 1-bit Adam on
more tasks, we apply it to the training of Generative Ad-
versarial Networks (GAN). We choose Deep Convolutional
GAN (Radford et al., 2015) as the model, which adopts
convolutional and convolutional-transpose layers for the dis-
criminator and generator. We use CelebFaces Attributes
Dataset (CelebA) (Liu et al., 2015) as the training data,
which contains more than 200K celebrity images. The task
is to train the discriminator and generator in an adversarial
way, such that the generator can create fake but vivid face
images. Figure 8 shows the training loss and generated

(a) Training loss (b) Generated im-
ages (Adam)

(c) Generated im-
ages (1-bit Adam)

Figure 8. Comparison of Adam and 1-bit Adam (20% warmup
steps) for training Deep Convolutional Generative Adversarial
Networks (DCGAN).

images by using original Adam optimizer and 1-bit Adam.
The results show that 1-bit Adam can achieve almost the
same training accuracy as the Adam optimizer.

8. Conclusions
In this paper, we propose an error-compensated Adam pre-
conditioned momentum SGD algorithm, 1-bit Adam, which
provides both communication efficiency and Adam’s con-
vergence speed. Our theoretical analysis demonstrates that
1-bit Adam admits a linear speed w.r.t the number of work-
ers in the network, and is robust to any compression method.
We validate the performance of 1-bit Adam empirically on
BERT, SQuAD and ResNet training tasks on up to 256
GPUs. Results show that 1-bit Adam converges as fast as
uncompressed Adam, reduces communication volume by
up to 5x, and runs up to 3.3 times faster than uncompressed
algorithms. Beyond those results, it’s interesting to see the
performance of 1-bit Adam on wider variety of tasks, e.g.,
reinforcement learning, which we leave for the future work.
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4633, Stockholmsmässan, Stockholm Sweden, 10–15 Jul
2018. PMLR.

S. Shi, Q. Wang, K. Zhao, Z. Tang, Y. Wang, X. Huang, and
X. Chu. A distributed synchronous sgd algorithm with
global top-k sparsification for low bandwidth networks. In
2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS), pages 2238–2247, 2019.

S. Shi, X. Zhou, S. Song, X. Wang, Z. Zhu, X. Huang,
X. Jiang, F. Zhou, Z. Guo, L. Xie, R. Lan, X. Ouyang,
Y. Zhang, J. Wei, J. Gong, W. Lin, P. Gao, P. Meng, X. Xu,
C. Guo, B. Yang, Z. Chen, Y. Wu, and X. Chu. Towards
scalable distributed training of deep learning on public
cloud clusters. In Proceedings of Machine Learning and
Systems, 2021.

R. Spring, A. Kyrillidis, V. Mohan, and A. Shrivastava. Com-
pressing gradient optimizers via Count-Sketches. Pro-
ceedings of the 36th International Conference on Ma-
chine Learning, 97:5946–5955, 2019.

S. U. Stich. Local sgd converges fast and communicates
little, 2019.

S. U. Stich, J.-B. Cordonnier, and M. Jaggi. Sparsified sgd
with memory. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems 31,
pages 4447–4458. Curran Associates, Inc., 2018.

J. Sun, T. Chen, G. Giannakis, and Z. Yang. Communication-
efficient distributed learning via lazily aggregated quan-
tized gradients. In H. Wallach, H. Larochelle, A. Beygelz-
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Supplementary
9. Bert Pre-training: speedup under different network bandwidths

Figure 9. Throughput speedup (on 256 V100 GPUs) between Adam and 1-bit Adam compression stage for BERT-Large pre-training
under different network bandwidths, from 50Mbits to 3Gbits. The x-axis is in log scale.

In Figure 9, we evaluate the throughput speedup between Adam and 1-bit Adam compression stage under different network
conditions. Specifically, we use traffic control utility tc to shape the bandwidth from 50Mbits to 3Gbits on Ethernet. With
the network going slow, 1-bit Adam compression stage can achieve a speedup up to 10.83⇥ over the uncompressed Adam
(6.59⇥ speedup at 1Gbits bandwidth and 5.93⇥ at 2Gbits bandwidth).

10. ResNet: comparing with additional communication efficient algorithms
Beyond Adam, there have been many communication efficient optimization algorithms proposed for SGD and Momentum
SGD. We also compare the convergence speed of those algorithms with 1-bit Adam for training ResNet-18 on CIFAR10.

We evaluate five implementations for comparison:

1. DoubleSqueeze (Tang et al., 2019): In DoubleSqueeze, the stochastic gradient gt is compressed with error compensa-
tion. We use 1-bit compression here.

2. Momentum SGD: The updating rule of Momentum SGD admits

mt+1 =�mt + (1� �)gt,

xt+1 =xt � �mt+1,

where gt is the stochastic gradient and mt is the momentum.

3. Error-Feedback Momentum SGD (EF Momentum SGD) (Zheng et al., 2019): This algorithm is similar with Zheng
et al. (2019), where the momentum mt is being compressed with error compensation. We use 1-bit compression here.

4. Local SGD (Stich, 2019): In local SGD, the model would get updated using local gradient following SGD, and after
every ⌧ step, the model would be averaged over workers.

5. Local SGD with Momentum: In local SGD, the model would get updated using local gradient following Momentum
SGD, and after every ⌧ step, both model and momentum would be averaged over workers.

We set the momentum � = 0.9 here. In order to get the comparable communication reduction, we set ⌧ = 4 for Local SGD.
The learning rate is grid searched from � 2 {0.5, 0.1, 0.01, 0.001} for each algorithm except Adam and 1-bit Adam (in
which we set learning rate � = 1⇥ 10�4), and we find that � = 0.1 works best for all of them.

In Figure 10 we compare the convergence speed of 1-bit Adam with DoubleSqueeze and Local SGD, and in Figure 11, we
compare the convergence speed of 1-bit Adam with EF Momentum SGD and Local SGD with Momentum.
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(a) Training loss (b) Testing accuracy

Figure 10. Epoch-wise convergence speed for ResNet-18. We compare 1-bit Adam with SGD-type of communication efficient algorithms.

(a) Training loss (b) Testing accuracy

Figure 11. Epoch-wise convergence speed for ResNet-18. We compare 1-bit Adam with Momentum SGD-type of communication efficient
algorithms, and the momentum is set to be � = 0.9.

Notice that for training ResNet-18, both EF Momentum SGD and Local Momentum SGD admits a faster convergence speed
than 1-bit Adam, this is because the uncompressed Momentum SGD runs faster than Adam.

Meanwhile, for Adam, we also evaluate the influence of the variance term to the convergence speed with some following
tryouts:

• Adam with n-bits Variance Compression: This algorithm would allreduce both the momentum term and variance
term, with variance term being compressed into n-bits representation (Alistarh et al., 2017). This design is to see
whether we could still achieve comparable convergence speed with the variance term being compressed. The results is
in Figure 12.

• Adam with Lazily Updated Variance: Here we only allreduce the variance term without compression after every ⌧
steps, and the the variance term would get updated continuously using local gradients. The results is in Figure 13.

Unfortunately, both methods fail to achieve a comparable convergence speed with Adam. Therefore the 1-bit Adam method
proposed in the paper is the only solution we found that could provide the same convergence speed with vanilla Adam.
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(a) Training loss (b) Testing accuracy
Figure 12. ResNet-18 on CIFAR10. Momentum and variance are compressed into 1-bit and n-bit. When n  8, the training cannot
converge, so we do not include the result above.

(a) Training loss (b) Testing accuracy
Figure 13. ResNet-18 on CIFAR10. The variance term would get averaged after every ⌧ stpes.

11. Proof to the updating form
Since our algorithm is equivalent to running a parameter-server prototype communication on each chunk of the gradient, so
below we will assume a parameter-server model (which means the tensor is not required to be divided into n chunks) for
simplicity.

According to the algorithm description in Section 4.3, at iteration t+ 1, the updating step of the momentum term mt+1 can
be divided into two steps:

1. Local Update and Compress: each worker locally update mt and use the error-compensate strategy for compressing.

m(i)
t =�mt + (1� �)g(i)

t

m(i)
t+ 1

2
=C![m(i)

t + �(i)t ]

�(i)t+1 =m(i)
t + �(i)t �m(i)

t+ 1
2
.

2. All workers send its m(i)
t+ 1

2
to the server. The server takes the average over them and compress it again using
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error-compensation.

mt+ 1
2
=
1

n

nX

i=1

m(i)
t+ 1

2

mt+1 =C![mt+ 1
2
+ �t]

�t+1 =mt+ 1
2
+ �t �mt+1.

3. The server broadcast mt+1 to all workers, and all workers update the local model according to

xt+1 = xt � �mt+1 ↵
q

v2
Tw

.

So actually the updating rule above can be summarized as

mt+1 =C![mt+ 1
2
+ �t]

=mt+ 1
2
+ �t � �t+1 (from the definition of �t+1)

=
1

n

nX

i=1

C![m(i)
t + �(i)t ] + �t � �t+1

=
1

n

nX

i=1

⇣
m(i)

t + �(i)t � �(i)t+1

⌘
+ �t � �t+1 (from the definition of �(i)t+1)

=�mt +
1� �

n

nX

i=1

g(i)
t +

 
1

n

nX

i=1

�(i)t + �t

!
�
 
1

n

nX

i=1

�(i)t+1 + �t+1

!
.

Denote

gt =
1

n

nX

i=1

g(i)
t

�t =
1

n

nX

i=1

�(i)t + �t,

the update rule of mt can be summarized as

mt = �mt�1 + (1� �)gt + �t�1 � �t,

and

xt+1 = xt � �Vmt,

where V = diag(1/
p
v1, 1/

p
v2, · · · , 1/

p
vd) is the a diagonal matrix that spanned with vTw .

12. Proof to Theorem 1
Notice that in for 1-bit Adam, the learning rate for each coordinate is different. In order to simplify our analysis, we instead
consider another function that is defined as

H(z) = F (V
1
2 z),

also

h(z) = f(V
1
2 z),

where V is a diagonal matrix.
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In this case we have

V
1
2rf(V

1
2 z) = rh(z).

Therefore the updating rule of 1-bit Adam in the view of h(·) is

V
1
2 zt+1 = V

1
2 zt � �V

1
2

⇣
V

1
2mt

⌘
.

It can be easily verified that

mt =(1� �)
tX

s=0

�t�sgs +
tX

s=0

�t�s(�s�1 � �s)

=(1� �)
tX

s=0

�t�s 1

n

nX

i=1

rF (V
1
2 zt; ⇠

(i)
t ) +

tX

s=0

�t�s(�s�1 � �s)

which means

V
1
2mt =(1� �)

tX

s=0

�t�s 1

n

nX

i=1

V
1
2rF (V

1
2 zt; ⇠

(i)
t ) +

tX

s=0

�t�sV
1
2 (�s�1 � �s)

=(1� �)
tX

s=0

�t�s 1

n

nX

i=1

rH(V
1
2 zt; ⇠

(i)
t ) +

tX

s=0

�t�sV
1
2 (�s�1 � �s)

=(1� �)
tX

s=0

�t�sgs(z) +
tX

s=0

�t�sV
1
2 (�s�1 � �s),

where gs(z) is the corresponding averaged stochastic gradient computed in the view of loss function h(·).

Then, if we define mt(z) = V
1
2mt, the updating rule of mt(z) admits

mt(z) = �mt�1(z) + (1� �)gt(z) + V
1
2 �t�1 � V

1
2 �t, (7)

and

V
1
2 zt+1 =V

1
2 zt � �V

1
2mt(z)

zt+1 =zt � �mt(z). (8)

From (7) and (8) we shall see that using different learning rate for each coordinate is equivalent to optimizing a new loss
function defined on scaling the original coordinate and using a uniform learning for all coordinates. Therefore below we
first study the behavior of the error-compensated momentum SGD using a constant learning rate.

Below are some critical lemmas for the proof of Theorem 1.

Lemma 1. Given two non-negative sequences {at}1t=1 and {bt}1t=1 that satisfying

at =
tX

s=1

⇢t�sbs, (9)

with ⇢ 2 [0, 1), we have

Dk :=
kX

t=1

a2t  1

(1� ⇢)2

kX

s=1

b2s.
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Proof. From the definition, we have

Sk =
kX

t=1

tX

s=1

⇢t�sbs =
kX

s=1

kX

t=s

⇢t�sbs =
kX

s=1

k�sX

t=0

⇢tbs 
kX

s=1

bs
1� ⇢

, (10)

Dk =
kX

t=1

tX

s=1

⇢t�sbs

tX

r=1

⇢t�rbr

=
kX

t=1

tX

s=1

tX

r=1

⇢2t�s�rbsbr


kX

t=1

tX

s=1

tX

r=1

⇢2t�s�r b
2
s + b2r
2

=
kX

t=1

tX

s=1

tX

r=1

⇢2t�s�rb2s

 1

1� ⇢

kX

t=1

tX

s=1

⇢t�sb2s

 1

(1� ⇢)2

kX

s=1

b2s, (due to (10))

which completes the proof.

Lemma 2. Under Assumption 1, for any sequence that follows the updating rule of

xt+1 =xt � �mt

mt =�mt�1 + (1� �)gt + �t�1 � �t,

if

Egt = rf(xt), Ekgt �rf(xt)k2  �2

n
, Ek�tk2  ✏2, 8t,

krf(x)�rf(y)k  Lkx� yk, 8x, 8y,

then we can guarantee that

✓
1� �L� 2�2L2

(1� �)2

◆ TX

t=0

Ekrf(xt)k2

2Ef(x1)� 2Ef(x⇤)

�
+

6�2L2✏2T

(1� �)2
+

L��2T

n
+

2�2L2�2T

n(1� �)2

Proof. Instead of investigating xt directly, we introduce the following sequence

yt = xt �
�

1� �
(mt + �t�1).

The updating rule of yt admits

yt+1 � yt =xt+1 � xt �
�

1� �
(mt+1 �mt � �t+1 + �t)

=� �mt �
�

1� �
(�mt + (1� �)gt + �t�1 � �t �mt + �t � �t�1)

=� �gt.
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Since f(·) is with L-Lipschitzian, we have

Ef(yt+1)� Ef(yt) E hrf(yt),yt+1 � yti+
L

2
E kyt+1 � ytk2

=� �E hrf(yt), gti+
L�2

2
Ekgtk2

=� �E hrf(yt),rf(xt)i+
L�2

2
Ekgtk2

=� �

2
Ekrf(xt)k2 �

�

2
Ekrf(yt)k2 +

�

2
Ekrf(xt)�rf(yt)k2 +

L�2

2
Ekgtk2

� �

2
Ekrf(xt)k2 +

�L2

2
Ekxt � ytk2 +

L�2

2
Ekgtk2

=� �

2
Ekrf(xt)k2 +

�3L2

2
E
����

mt

1� �
+

�t�1

1� �

����
2

+
L�2

2
Ekgtk2

� �

2
Ekrf(xt)k2 +

�3L2

(1� �)2
Ekmtk2 +

�3L2

(1� �)2
Ek�t�1k2 +

L�2

2
Ekgtk2

� �

2
Ekrf(xt)k2 +

�3L2

(1� �)2
Ekmtk2 +

�3L2✏2

(1� �)2
+

L�2

2
Ekgtk2

� �

2
Ekrf(xt)k2 +

�3L2

(1� �)2
Ekmtk2 +

�3L2✏2

(1� �)2
+

L�2

2
Ekrf(xt)k2 +

L�2�2

2n
.

Summing up the equation above from t = 0 to t = T we get

Ef(yT+1)� Ef(y0)  � (1� �L)�

2

TX

t=0

Ekrf(xt)k2 +
�3L2

(1� �)2

TX

t=0

Ekmtk2 +
�3L2✏2T

(1� �)2
+

L�2�2T

2n
,

which can be rewritten into

(1� �L)
TX

t=0

Ekrf(xt)k2 2Ef(y0)� 2Ef(yT+1)

�
+

2�2L2

(1� �)2

TX

t=0

Ekmtk2 +
2�2L2✏2T

(1� �)2
+

L��2T

n
. (11)

Notice that we have

mt =(1� �)
tX

s=0

�t�sgs +
tX

s=0

�t�s(�s�1 � �s)

which by using Lemma 1, we have

TX

t=0

kmtk2 
TX

t=0

kgtk2 +
2

(1� �)2

TX

t=0

k�tk2 
TX

t=0

krf(xt)k2 +
�2T

n
+

2✏2T

(1� �)2
. (12)

Combing (11) and (12) together we get

✓
1� �L� 2�2L2

(1� �)2

◆ TX

t=0

Ekrf(xt)k2

2Ef(y0)� 2Ef(yT+1)

�
+

6�2L2✏2T

(1� �)2
+

L��2T

n
+

2�2L2�2T

n(1� �)2

2Ef(x1)� 2Ef(x⇤)

�
+

6�2L2✏2T

(1� �)2
+

L��2T

n
+

2�2L2�2T

n(1� �)2
.



1-bit Adam: Communication Efficient Large-Scale Training with Adam’s Convergence Speed

Proof to Theorem 1 Since using a per-coordinate learning rate for loss function f(·) is equivalent to use a constant
learning for all coordinates but for loss function h(·), the only two thing that change are

• Different L-Lipschitzian coefficient: the L-Lipschitzian coefficient for h(·) is

krh(x)�rh(y)k2 =
���V

1
2rf(V

1
2x)� V

1
2rf(V

1
2y)
���
2

=
���rf(V

1
2x)�rf(V

1
2y)
���
2

V

L2
���V

1
2x� V

1
2y
���
2

V

=L2kx� yk2V 2

L2V 2
maxkx� yk2.

Therefore the effective L-Lipschitzian coefficient of h(x) is LVmax

• Different definition of �t: from (7) we shall see that actually the compression error in the view of h(·) is V 1
2 �t, so in

this case we have

EkV 1
2 �tk2  Vmax✏

2

Proof. From Lemma 2, we have

✓
1� �L� 2�2L2V 2

max

(1� �)2

◆ TX

t=0

Ekrh(zt)k2

2Ef(x0)� 2Ef(x⇤)

�
+

6�2L2✏2V 3
maxT

(1� �)2
+

L�Vmax�2T

n
+

2�2L2�2V 2
maxT

n(1� �)2
,

which by using rh(zt) = V
1
2rf(xt), it becomes

✓
1� �LVmax �

2�2L2V 2
max

(1� �)2

◆ TX

t=0

Ekrf(xt)k2V

2Ef(x0)� 2Ef(x⇤)

�
+

6�2L2✏2V 3
maxT

(1� �)2
+

L�Vmax�2T

n
+

2�2L2�2V 2
maxT

n(1� �)2
,

Since Vmax = 1p
vmin

, therefore the equation above becomes

✓
1� �L

vmin
� 2�2L2

(1� �)2v2min

◆ TX

t=0

Ekrf(xt)k2V

2Ef(x0)� 2Ef(x⇤)

�
+

6�2L2✏2T

(1� �)2v3min

+
L��2T

nvmin
+

2�2L2�2T

n(1� �)2v2min

,

13. Proof to Corollary 1
Proof. By choosing � = 1��

4LVmax+�
p

T
n +T

1
3 ✏

2
3

, we can guarantee that

1� �L� 2�2L2V 2
max

(1� �)2
�1

2
.
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So (6) leads to

TX

t=0

Ekrf(xt)k2V 2 (Ef(y0)� f(y⇤))

(1� �)

 
4LVmax + �

r
T

n
+ T

1
3 ✏

2
3

!

+
⇣
(1� �)L

p
T + 2L2V 2

max

⌘ �p
n
+ 6L2✏

2
3T

1
3V 3

max

1

T

TX

t=0

Ekrf(xt)k2V 2 (Ef(y0)� f(y⇤))

(1� �)

✓
4LVmax

T
+

�p
nT

+ T
� 2

3 ✏
2
3

◆

+

✓
(1� �)L+

2L2V 2
maxp
T

◆
�p
nT

+ 6L2✏
2
3T� 2

3V 3
max.

Treating f(y1)� f⇤, � and L as constants, from the inequality above we get

1

T

TX

t=0

Ekrf(xt)k2 . �p
nT

+
✏

2
3

T
2
3

+
1

T
.

It completes the proof.


